题目内容
定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是
- A.2
- B.3
- C.4
- D.5
C
分析:“距离坐标”是(1,2)的点表示的含义是该点到直线l1、l2的距离分别为1、2.由于到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,它们有4个交点,即为所求.
解答:解:如图,
∵到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,
到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,
∴“距离坐标”是(1,2)的点是M1、M2、M3、M4,一共4个.
故选C.
点评:本题考查了点到直线的距离,两平行线之间的距离的定义,理解新定义,掌握到一条直线的距离等于定长k的点在与已知直线相距k的两条平行线上是解题的关键.
分析:“距离坐标”是(1,2)的点表示的含义是该点到直线l1、l2的距离分别为1、2.由于到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,它们有4个交点,即为所求.
解答:解:如图,
∵到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,
到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,
∴“距离坐标”是(1,2)的点是M1、M2、M3、M4,一共4个.
故选C.
点评:本题考查了点到直线的距离,两平行线之间的距离的定义,理解新定义,掌握到一条直线的距离等于定长k的点在与已知直线相距k的两条平行线上是解题的关键.
练习册系列答案
相关题目
定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序非负实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是( )