题目内容

【题目】我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)).图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3 . 若正方形EFGH的边长为2,则S1+S2+S3=

【答案】12
【解析】解:∵八个直角三角形全等,四边形ABCD,EFGH,MNKT是正方形, ∴CG=KG,CF=DG=KF,
∴S1=(CG+DG)2
=CG2+DG2+2CGDG
=GF2+2CGDG,
S2=GF2
S3=(KF﹣NF)2=KF2+NF2﹣2KFNF,
∴S1+S2+S3=GF2+2CGDG+GF2+KF2+NF2﹣2KFNF=3GF2=12,
故答案是:12.
根据八个直角三角形全等,四边形ABCD,EFGH,MNKT是正方形,得出CG=KG,CF=DG=KF,再根据S1=(CG+DG)2 , S2=GF2 , S3=(KF﹣NF)2 , S1+S2+S3=12得出3GF2=12.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网