题目内容
如图,∠1=30°,∠B=60°,AB⊥AC,则下列说法正确的是
- A.AB∥CD
- B.AD∥BC
- C.AC⊥CD
- D.∠DAB+∠D=180°
B
分析:因为AB⊥AC,所以∠BAC=90°,又因为∠1=30°,∠B=60°,则可求得∠1=∠BCA=30°,故AD∥BC.
解答:∵AB⊥AC,
∴∠BAC=90°.
∵∠1=30°,∠B=60°,
∴∠BCA=30°.
∴∠1=∠BCA.
∴AD∥BC.
故选B.
点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.
分析:因为AB⊥AC,所以∠BAC=90°,又因为∠1=30°,∠B=60°,则可求得∠1=∠BCA=30°,故AD∥BC.
解答:∵AB⊥AC,
∴∠BAC=90°.
∵∠1=30°,∠B=60°,
∴∠BCA=30°.
∴∠1=∠BCA.
∴AD∥BC.
故选B.
点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.
练习册系列答案
相关题目