题目内容
【题目】(2016广西省贺州市第18题)在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)
【答案】6+3
【解析】
试题分析:先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.延长EF和BC,交于点G
∵矩形ABCD中,∠B的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,
∴直角三角形ABE中,BE==,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF
∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=
由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC∴
设CG=x,DE=2x,则AD=9+2x=BC ∵BG=BC+CG ∴=9+2x+x 解得x=
∴BC=9+2(﹣3)=
练习册系列答案
相关题目