题目内容
如图,一次函数y1=﹣x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b+1)x+c的图象可能为( )
A. B.
C. D.
把不等式组的解集在数轴上表示正确的是( )
A. B. C. D.
阅读下列材料:
数学课上老师布置一道作图题:
小东的作法如下:
老师说:“小东的作法是正确的.”
请回答:小东的作图依据是_________________________________________________.
如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.
(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.
①求证:BD⊥CF;
②当AB=4,AD=时,求线段BG的长.
如图,在半径为13的⊙O中,弦AB=10,点C是优弧弧AB上一点(不与A,B重合),则cosC的值为____.
如图,a∥b,含30°角的三角板的直角顶点在直线b上,一个锐角的顶点在直线a上,若∠1=20°,则∠2的度数是( )
A. 20° B. 40° C. 50° D. 60°
如图所示,AB 是⊙O 的直径,P 为 AB 延长线上的一点,PC 切⊙O 于点 C,AD⊥PC, 垂足为 D,弦 CE 平分∠ACB,交 AB 于点 F,连接 AE.
(1)求证:PC=PF;
(2)若 tan∠ABC=,AE=5,求线段 PC 的长.
盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为( )
A. 90个 B. 24个 C. 70个 D. 32个
某同学在研究传统文化“抖空竹”时有一个发现:“抖空竹”的过程可以抽象成一个数学问题,如图所示,已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是( )
A. 28° B. 34° C. 46° D. 56°