题目内容
(2013•曲靖)如图,将△ABC绕其中一个顶点顺时针连续旋转n′1、n′2、n′3所得到的三角形和△ABC的对称关系是
关于旋转点成中心对称
关于旋转点成中心对称
.分析:先根据三角形内角和为180°得出n′1+n′2+n′3=180°,再由旋转的定义可知,将△ABC绕其中一个顶点顺时针旋转180°所得到的三角形和△ABC关于这个点成中心对称.
解答:解:∵n′1+n′2+n′3=180°,
∴将△ABC绕其中一个顶点顺时针连续旋转n′1、n′2、n′3,就是将△ABC绕其中一个顶点顺时针旋转180°,
∴所得到的三角形和△ABC关于这个点成中心对称.
故答案为:关于旋转点成中心对称.
∴将△ABC绕其中一个顶点顺时针连续旋转n′1、n′2、n′3,就是将△ABC绕其中一个顶点顺时针旋转180°,
∴所得到的三角形和△ABC关于这个点成中心对称.
故答案为:关于旋转点成中心对称.
点评:本题考查了三角形内角和定理,旋转的定义与性质,比较简单.正确理解顺时针连续旋转n′1、n′2、n′3,就是顺时针旋转180°是解题的关键.
练习册系列答案
相关题目