题目内容

如果n为正偶数,并且(n-1)2整除n2006-1,那么n的最大值为
1004
1004
分析:首先利用nk-1=(n-1)(nk-1+nk-2+nk-3+…+n+1)把n2006-1分解因式,然后把n2005+n2004+n2003+…+n+1变为(n2005-1)+(n2004-1)+…+(n2-1)+(n-1)+2006,接着利用数的整除性即可解决问题.
解答:解:∵n2006-1=(n-1)(n2005+n2004+n2003+…+n+1),
∴(n-1)2整除n2006-1就是(n-1)整除n2005+n2004+n2003+…+n+1,
而n2005+n2004+n2003+…+n+1=(n2005-1)+(n2004-1)+…+(n2-1)+(n-1)+2006,
但(n-1)整除nk-1,k=1、2、…,2005,
∴(n-1)整除2006,
又n为正偶数,
故n的最大值为1004.
故答案为:1004.
点评:此题主要考查了数的整除性问题,解题时多次利用公式nk-1=(n-1)(nk-1+nk-2+nk-3+…+n+1),然后利用数的整除性即可求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网