题目内容

精英家教网如图,在等边△ABC中,M、N分别是边AB,AC的中点,D为MN上任意一点,BD,CD的延长线分别交于AB,AC于点E,F.若
1
CE
+
1
BF
=6,则△ABC的边长为(  )
A、
1
8
B、
1
4
C、
1
2
D、1
分析:过点A作直线PQ∥BC,延长BE交PQ于点P;延长CF,交PQ于点Q.证明△BCE∽△PAE,△CBF∽△QAF,
构造
1
CE
+
1
BF
与BC的关系求解.
解答:精英家教网解:过点A作直线PQ∥BC,延长BD交PQ于点P;延长CD,交PQ于点Q.
∵PQ∥BC,
∴△PQD∽△BCD,
∵点D在△ABC的中位线上,
∴△PQD与△BCD的高相等,
∴△PQD≌△BCD,
∴PQ=BC,
∵AE=AC-CE,AF=AB-BF,
在△BCE与△PAE中,∠PAE=∠ACB,∠APE=∠CBE,
∴△BCE∽△PAE,
AE
CE
=
AP
BC
…①
同理:△CBF∽△QAF,
AF
BF
=
AQ
BC
…②
①+②,得:
AC-CE
CE
+
AB-BF
BF
=
AP+AQ
BC

AC
CE
+
AB
BF
=3,
又∵
1
CE
+
1
BF
=6,AC=AB,
∴△ABC的边长=
1
2

故选C.
点评:本题综合考查了三角形中位线定理及三角形的相似的知识,解题的关键是作平行线构造相似,从而得到已知与所求线段的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网