题目内容
如图,一副直角三角板按如图所示放置,若AB∥DF,则∠AGD的度数为( )
A. 45° B. 75° C. 60° D. 65°
数据130000可用科学记数法表示为( )
A. 13×104 B. 1.3×105 C. 0.13×106 D. 1.3×104
与三角形三个顶点距离相等的点是 ( )
A. 三条角平分线交点 B. 三边中线交点
C. 三边上的高所在直线交点 D. 三边垂直平分线的交点
不论a取何值时,点A(a-1,3a+2)都在直线l上,B(m,n)是直线l上的点,则(3m-n+2)2的值等于_________.
将数轴上表示﹣1的点A向右移动5个单位长度,此时点A所对应的数为_____.
下列各图中的MA1与NAn平行.
(1)图①中的∠A1+∠A2=______度,
图②中的∠A1+∠A2+∠A3=______度,
图③中的∠A1+∠A2+∠A3+∠A4=______度,
第⑩个图中的∠A1+∠A2+∠A3+…+∠A10=______度
(2)第n个图中的∠A1+∠A2+∠A3+…+∠An=______.
(3)证明图②中的结论.
求x的值:
(1)(x+2)2=25 (2)(x-1)3=27.
阅读理【解析】小明热爱数学,在课外书上看到了一个有趣的定理——“中线长定理”:三角形两边的平方和等于第三边的一半与第三边上的中线的平方和的两倍.如图1,在△ABC中,点D为BC的中点,根据“中线长定理”,可得:
AB2+AC2=2AD2+2BD2.
小明尝试对它进行证明,部分过程如下:
【解析】过点A作AE⊥BC于点E,如图2,在Rt△ABE中,AB2=AE2+BE2,
同理可得:AC2=AE2+CE2,AD2=AE2+DE2,
为证明的方便,不妨设BD=CD=x,DE=y,
∴AB2+AC2=AE2+BE2+AE2+CE2=……
(1)请你完成小明剩余的证明过程;
理解运用:
(2) ① 在△ABC中,点D为BC的中点,AB=6,AC=4,BC=8,则AD=_______;
② 如图3,⊙O的半径为6,点A在圆内,且OA=2,点B和点C在⊙O上,且∠BAC=90°,点E、F分别为AO、BC的中点,则EF的长为________;
拓展延伸:
(3)小明解决上述问题后,联想到《能力训练》上的题目:如图4,已知⊙O的半径为5,以A(?3,4)为直角顶点的△ABC的另两个顶点B,C都在⊙O上,D为BC的中点,求AD长的最大值.请你利用上面的方法和结论,求出AD长的最大值.
反比例函数y=的图象经过点(2,3),则k=___________.