题目内容
【题目】如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。
(1)求直线BC与抛物线的解析式;
(2)若点M是抛物线在x轴下方图象上的动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;
(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标。
【答案】解:(1)设直线BC的解析式为,
将B(5,0),C(0,5)代入,得,得。
∴直线BC的解析式为。
将B(5,0),C(0,5)代入,得,得。
∴抛物线的解析式。
(2)∵点M是抛物线在x轴下方图象上的动点,∴设M。
∵点N是直线BC上与点M横坐标相同的点,∴N。
∵当点M在抛物线在x轴下方时,N的纵坐标总大于M的纵坐标。
∴。
∴MN的最大值是。
(3)当MN取得最大值时,N。
∵的对称轴是,B(5,0),∴A(1,0)。∴AB=4。
∴。
由勾股定理可得,。
设BC与PQ的距离为h,则由S1=6S2得:,即。
如图,过点B作平行四边形CBPQ的高BH,过点H作x轴的垂线交点E ,则BH=,EH是直线BC沿y轴方向平移的距离。
易得,△BEH是等腰直角三角形,
∴EH=。
∴直线BC沿y轴方向平移6个单位得PQ的解析式:
或。
当时,与联立,得
,解得或。此时,点P的坐标为(-1,12)或(6,5)。
当时,与联立,得
,解得或。此时,点P的坐标为(2,-3)或(3,-4)。
综上所述,点P的坐标为(-1,12)或(6,5)或(2,-3)或(3,-4)。
【解析】(1)由B(5,0),C(0,5),应用待定系数法即可求直线BC与抛物线的解析式。
(2)构造MN关于点M横坐标的函数关系式,应用二次函数最值原理求解。
(3)根据S1=6S2求得BC与PQ的距离h,从而求得PQ由BC平移的距离,根据平移的性质求得PQ的解析式,与抛物线联立,即可求得点P的坐标。
【题目】某校八年级两个班,各选派10名学生参加学校举行的“美丽绍兴乡土风情知识”大赛预赛各参赛选手的成绩如下:
八(1)班:88,91,92,93,93,93,94,98,98,100;
八(2)班:89,93,93,93,95,96,96,98,98,99.
通过整理,得到数据分析表如下:
班级 | 最高分 | 平均分 | 中位数 | 众数 | 方差 |
八(1)班 | 100 | m | 93 | 93 | 12 |
八(2)班 | 99 | 95 | n | 93 | 8.4 |
(1)求表中m、n的值;
(2)依据数据分析表,有同学说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有同学说(2)班的成绩更好请您写出两条支持八(2)班成绩好的理由.