题目内容
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是
A.a>0 B.3是方程ax2+bx+c=0的一个根
C.a+b+c=0 D.当x<1时,y随x的增大而减小
在□ABCD中,若∠A+∠C=140°,那么∠D=_____.
如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B的坐标为(4,3),∠CAO的平分线与y轴相交于点D,则点D的坐标为__________.
在△ABC中,∠C>∠B,AE平分∠BAC,F为射线AE上一点(不与点E重合),且FD⊥BC于D;
(1)如果点F与点A重合,且∠C=50°,∠B=30°,如图1,求∠EFD的度数;
(2)如果点F在线段AE上(不与点A重合),如图2,问∠EFD与∠C﹣∠B有怎样的数量关系?并说明理由.
(3)如果点F在△ABC外部,如图3,此时∠EFD与∠C﹣∠B的数量关系是否会发生变化?请说明理由.
如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:
①四边形AEGF是菱形②△AED≌△GED③∠DFG=112.5°④BC+FG=1.5其中正确的结论是________.
在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是( )
A. B. C. D.
张师傅驾驶某种型号轿车从甲地去乙地,该种型号轿车每百公里油耗为10升(每行驶100公里需消耗10升汽油).途中在加油站加了一次油,加油前,根据仪表盘显示,油箱中还剩4升汽油.假设加油前轿车以80公里/小时的速度匀速行驶,加油后轿车以90公里/小时的速度匀速行驶(不计加油时间),已知油箱中剩余油量y(升)与行驶时间t(小时)之间的函数关系如图所示.
(1) 加油前,该轿车每小时消耗汔油 升;加油后,该轿车每小时消耗汔油 升;
(2)求加油前油箱剩余油量y(升)与行驶时间t(小时)之间的函数表达式;
(3)求张师傅在加油站加了多少升汽油.
如图,在平行四边形ABCD中,AC、BD是它的两条对角线,下列条件中,能判断这个平行四边形是矩形的是( )
A. ∠BAC=∠ACB B. ∠BAC=∠ACD
C. ∠BAC=∠DAC D. ∠BAC=∠ABD
如图,直线l与双曲线交于A、C两点,将直线l绕点O顺时针旋转a度角(0°<a≤45°),与双曲线交于B、D两点,则四边形ABCD的形状一定是__.