题目内容
不等式3(x﹣1)≤5﹣x的非负整数解有( )
A. 1个 B. 2个 C. 3个 D. 4个
如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是( )
A. 相切 B. 相交 C. 相离 D. 无法确定
若△ABC≌△A1 B1C1,且∠A=100°,∠B=50°,则∠C1=_______.
解下列不等式组:
某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打( )
A. 六折 B. 七折 C. 八折 D. 九折
如图,点分别是轴上位于原点两侧的两点,点在第一象限,直线 交轴于点,直线交轴于点,.
(1)求;
(2)求点的坐标及的值;
(3)若,求直线的函数表达式.
两地之间的路程为2 380 m,甲、乙两人分别从两地出发,相向而行.已知甲先出发5 min后,乙才出发,他们两人在之间的地相遇,相遇后,甲立即返回地,乙继续向地前行.甲到达地时停止行走,乙到达地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(m)与甲出发的时间(min)之间的关系如图所示,则乙到达地时,甲与地相距的路程是
________m.
如图,已知直线lAC:y=﹣交x轴、y轴分别为A、C两点,直线BC⊥AC交x轴于点B.
(1)求点B的坐标及直线BC的解析式;
(2)将△OBC关于BC边翻折,得到△O′BC,过点O′作直线O′E垂直x轴于点E,F是y轴上一点,P是直线O′E上任意一点,P、Q两点关于x轴对称,当|PA﹣PC|最大时,请求出QF+FC的最小值;
(3)若M是直线O′E上一点,且QM=3,在(2)的条件下,在平面直角坐标系中,是否存在点N,使得以Q、F、M、N四点为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
分解因式:x3﹣9x=_____.