ÌâÄ¿ÄÚÈÝ
ѧϰ¹ýÈý½Çº¯Êý£¬ÎÒÃÇÖªµÀÔÚÖ±½ÇÈý½ÇÐÎÖУ¬Ò»¸öÈñ½ÇµÄ´óСÓëÁ½Ìõ±ß³¤µÄ±ÈÖµÏ໥Ψһȷ¶¨£¬Òò´Ë±ß³¤Óë½ÇµÄ´óС֮¼ä¿ÉÒÔÏ໥ת»¯£®ÀàËƵģ¬Ò²¿ÉÒÔÔÚµÈÑüÈý½ÇÐÎÖн¨Á¢±ß½ÇÖ®¼äµÄÁªÏµ£¬ÎÒÃǶ¨Ò壺µÈÑüÈý½ÇÐÎÖеױßÓëÑüµÄ±È½Ð×ö¶¥½ÇµÄÕý¶Ô£¨sad£©£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬¶¥½ÇAµÄÕý¶Ô¼Ç×÷sadA£¬Õâʱsad A=
£®ÈÝÒ×ÖªµÀÒ»¸ö½ÇµÄ´óСÓëÕâ¸ö½ÇµÄÕý¶ÔÖµÒ²ÊÇÏ໥Ψһȷ¶¨µÄ£®
¸ù¾ÝÉÏÊö¶Ô½ÇµÄÕý¶Ô¶¨Ò壬½âÏÂÁÐÎÊÌ⣺
£¨1£©Ìî¿Õ£ºsad60¡ã=
£¬sad120¡ã=
£»
£¨2£©¶ÔÓÚ0¡ã£¼A£¼180¡ã£¬¡ÏAµÄÕý¶ÔÖµsadAµÄÈ¡Öµ·¶Î§ÊÇ
£¨3£©Èçͼ£¬ÒÑÖªsinA=
£¬ÆäÖÐAΪÈñ½Ç£¬ÊÔÇósadAµÄÖµ£»
£¨4£©ÉèsinA=k£¬ÇëÖ±½ÓÓÃkµÄ´úÊýʽ±íʾsadAµÄֵΪ
£®
£®£®
1 |
2 |
¸ù¾ÝÉÏÊö¶Ô½ÇµÄÕý¶Ô¶¨Ò壬½âÏÂÁÐÎÊÌ⣺
£¨1£©Ìî¿Õ£ºsad60¡ã=
1
1
£¬sad90¡ã=2 |
2 |
3 |
3 |
£¨2£©¶ÔÓÚ0¡ã£¼A£¼180¡ã£¬¡ÏAµÄÕý¶ÔÖµsadAµÄÈ¡Öµ·¶Î§ÊÇ
0£¼sadA£¼2
0£¼sadA£¼2
£»£¨3£©Èçͼ£¬ÒÑÖªsinA=
3 |
5 |
£¨4£©ÉèsinA=k£¬ÇëÖ±½ÓÓÃkµÄ´úÊýʽ±íʾsadAµÄֵΪ
2-2
|
2-2
|
·ÖÎö£º£¨1£©µ±A=60¡ã£¬Èý½ÇÐÎΪµÈ±ßÈý½ÇÐΣ¬µ×±ßÓëÑüÏàµÈ£»µ±A=90¡ã£¬Èý½ÇÐÎΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬µ×±ßÊÇÑüµÄ
±¶£»µ±A=120¡ã£¬×÷µ×±ßÉϵĸߣ¬µ×½ÇΪ30¡ã£¬Ò×ÇóµÃµ×±ßÊÇÑüµÄ
±¶£¬È»ºó¸ù¾ÝµÈÑüÈý½ÇÐÎÖеױßÓëÑüµÄ±È½Ð×ö¶¥½ÇµÄÕý¶Ô£¨sad£©¼´¿ÉµÃµ½´ð°¸£»
£¨2£©0¡ã£¼A£¼180¡ã£¬¸ù¾ÝÈý½ÇÐÎÈý±ßµÄ¹ØϵµÃµ½Á½ÑüÖ®ºÍ´óÓڵױ߼´¿ÉµÃµ½0£¼sadA£¼2£»
£¨3£©¹ýB×÷BD¡ÍACÓÚD£¬ÉèBD=3x£¬AB=5x£¬ÀûÓù´¹É¶¨Àí¼ÆËã³öAD=4x£¬ÔòDC=x£¬ÔÚRt¡÷BDCÖиù¾Ý¹´¹É¶¨ÀíÇó³öBC£¬È»ºó¸ù¾Ý¶¥½ÇµÄÕý¶Ô¶¨ÒåÇóÖµ¼´¿É£»
£¨4£©Ó루3£©µÄ¼ÆËã·½·¨Ò»Ñù£®
2 |
3 |
£¨2£©0¡ã£¼A£¼180¡ã£¬¸ù¾ÝÈý½ÇÐÎÈý±ßµÄ¹ØϵµÃµ½Á½ÑüÖ®ºÍ´óÓڵױ߼´¿ÉµÃµ½0£¼sadA£¼2£»
£¨3£©¹ýB×÷BD¡ÍACÓÚD£¬ÉèBD=3x£¬AB=5x£¬ÀûÓù´¹É¶¨Àí¼ÆËã³öAD=4x£¬ÔòDC=x£¬ÔÚRt¡÷BDCÖиù¾Ý¹´¹É¶¨ÀíÇó³öBC£¬È»ºó¸ù¾Ý¶¥½ÇµÄÕý¶Ô¶¨ÒåÇóÖµ¼´¿É£»
£¨4£©Ó루3£©µÄ¼ÆËã·½·¨Ò»Ñù£®
½â´ð£º½â£º£¨1£©1£»
£»
£»
£¨2£©0£¼sadA£¼2£»
£¨3£©¹ýB×÷BD¡ÍACÓÚD£¬Èçͼ£¬
¡àsinA=
=
£¬
ÉèBD=3x£¬AB=5x£¬
¡àAD=
=4x£¬
¡àDC=5x-4x=x£¬
ÔÚRt¡÷BDCÖУ¬BC=
=
=
x£¬
¡àsadA=
=
£»
£¨4£©ÈçÉÏͼ£¬
sinA=k£¬BD=kAB£¬
¡àAD=
=
AB£¬
¡àDC=AC-AD=£¨1-
£©AB£¬
¡àBC=
=
AB£¬
¡àsadA=
=
£®
¹Ê´ð°¸Îª
£®
2 |
3 |
£¨2£©0£¼sadA£¼2£»
£¨3£©¹ýB×÷BD¡ÍACÓÚD£¬Èçͼ£¬
¡àsinA=
3 |
5 |
BD |
AB |
ÉèBD=3x£¬AB=5x£¬
¡àAD=
(5x)2-(3x)2 |
¡àDC=5x-4x=x£¬
ÔÚRt¡÷BDCÖУ¬BC=
BD2+DC2 |
(3x)2+x2 |
10 |
¡àsadA=
BC |
AB |
| ||
5 |
£¨4£©ÈçÉÏͼ£¬
sinA=k£¬BD=kAB£¬
¡àAD=
AB2-BD2 |
1-k2 |
¡àDC=AC-AD=£¨1-
1-k2 |
¡àBC=
BD2+DC2 |
2-2
|
¡àsadA=
BC |
AB |
2-2
|
¹Ê´ð°¸Îª
2-2
|
µãÆÀ£º±¾Ì⿼²éÁ˽âÖ±½ÇÈý½ÇÐΣºÀûÓÃÈý½Çº¯ÊýµÄ¶¨ÒåºÍ¹´¹É¶¨ÀíÇó³öÈý½ÇÐÎÖÐδ֪µÄ½ÇºÍ±ß£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
£¨±¾Ð¡ÌâÂú·Ö10·Ö£©
ѧϰ¹ýÈý½Çº¯Êý£¬ÎÒÃÇÖªµÀÔÚÖ±½ÇÈý½ÇÐÎÖУ¬Ò»¸öÈñ½ÇµÄ´óСÓëÁ½Ìõ±ß³¤µÄ±ÈÖµÏ໥Ψһȷ¶¨£¬Òò´Ë±ß³¤Óë½ÇµÄ´óС֮¼ä¿ÉÒÔÏ໥ת»¯.
ÀàËƵģ¬¿ÉÒÔÔÚµÈÑüÈý½ÇÐÎÖн¨Á¢±ß½ÇÖ®¼äµÄÁªÏµ£¬ÎÒÃǶ¨Ò壺µÈÑüÈý½ÇÐÎÖеױßÓëÑüµÄ±È½Ð×ö¶¥½ÇµÄÕý¶Ô£¨sad£©.Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬¶¥½ÇAµÄÕý¶Ô¼Ç×÷sadA£¬Õâʱsad A=.ÈÝÒ×ÖªµÀÒ»¸ö½ÇµÄ´óСÓëÕâ¸ö½ÇµÄÕý¶ÔÖµÒ²ÊÇÏ໥Ψһȷ¶¨µÄ.
¸ù¾ÝÉÏÊö¶Ô½ÇµÄÕý¶Ô¶¨Ò壬½âÏÂÁÐÎÊÌ⣺
£¨1£©sad µÄֵΪ£¨ £©
£¨2£©¶ÔÓÚ£¬¡ÏAµÄÕý¶ÔÖµsad AµÄÈ¡Öµ·¶Î§ÊÇ .
£¨3£©ÒÑÖª£¬ÆäÖÐΪÈñ½Ç£¬ÊÔÇósadµÄÖµ.
ѧϰ¹ýÈý½Çº¯Êý£¬ÎÒÃÇÖªµÀÔÚÖ±½ÇÈý½ÇÐÎÖУ¬Ò»¸öÈñ½ÇµÄ´óСÓëÁ½Ìõ±ß³¤µÄ±ÈÖµÏ໥Ψһȷ¶¨£¬Òò´Ë±ß³¤Óë½ÇµÄ´óС֮¼ä¿ÉÒÔÏ໥ת»¯.
ÀàËƵģ¬¿ÉÒÔÔÚµÈÑüÈý½ÇÐÎÖн¨Á¢±ß½ÇÖ®¼äµÄÁªÏµ£¬ÎÒÃǶ¨Ò壺µÈÑüÈý½ÇÐÎÖеױßÓëÑüµÄ±È½Ð×ö¶¥½ÇµÄÕý¶Ô£¨sad£©.Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬¶¥½ÇAµÄÕý¶Ô¼Ç×÷sadA£¬Õâʱsad A=.ÈÝÒ×ÖªµÀÒ»¸ö½ÇµÄ´óСÓëÕâ¸ö½ÇµÄÕý¶ÔÖµÒ²ÊÇÏ໥Ψһȷ¶¨µÄ.
¸ù¾ÝÉÏÊö¶Ô½ÇµÄÕý¶Ô¶¨Ò壬½âÏÂÁÐÎÊÌ⣺
£¨1£©sad µÄֵΪ£¨ £©
A£® | B£®1 | C£® | D£®2 |
£¨3£©ÒÑÖª£¬ÆäÖÐΪÈñ½Ç£¬ÊÔÇósadµÄÖµ.
ѧϰ¹ýÈý½Çº¯Êý£¬ÎÒÃÇÖªµÀÔÚÖ±½ÇÈý½ÇÐÎÖУ¬Ò»¸öÈñ½ÇµÄ´óСÓëÁ½Ìõ±ß³¤µÄ±ÈÖµÏ໥Ψһȷ¶¨£¬Òò´Ë±ß³¤Óë½ÇµÄ´óС֮¼ä¿ÉÒÔÏ໥ת»¯.ÀàËƵģ¬¿ÉÒÔÔÚµÈÑüÈý½ÇÐÎÖн¨Á¢±ß½ÇÖ®¼äµÄÁªÏµ£¬ÎÒÃǶ¨Ò壺µÈÑüÈý½ÇÐÎÖеױßÓëÑüµÄ±È½Ð×ö¶¥½ÇµÄÕý¶Ô£¨sad£©.Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬¶¥½ÇAµÄÕý¶Ô¼Ç×÷sadA £¬ÕâʱsadA=.ÈÝÒ×ÖªµÀÒ»¸ö½ÇµÄ´óСÓëÕâ¸ö½ÇµÄÕý¶ÔÖµÒ²ÊÇÏ໥Ψһȷ¶¨µÄ. ¸ù¾ÝÉÏÊö¹ØÓڽǵÄÕý¶Ô¶¨Ò壬½â¾öÏÂÁÐÎÊÌ⣺
¡¾Ð¡Ìâ1¡¿sadµÄֵΪ£¨ ¡ø £©
A£® | B£®1 | C£® | D£®2 |
A£® | B£® | C£® |
D£® |