ÌâÄ¿ÄÚÈÝ
ÈçͼËùʾ£¬Ä³Í¬Ñ§ÔÚ̽¾¿¶þ´Îº¯ÊýͼÏóʱ£¬×÷Ö±Ïßy=mƽÐÐÓÚxÖᣬ½»¶þ´Îº¯Êýy=x2µÄͼÏóÓÚA¡¢BÁ½µã£¬×÷AC¡¢BD·Ö±ð´¹Ö±ÓÚxÖᣬ·¢ÏÖËıßÐÎABCDÊÇÕý·½ÐΣ®£¨1£©ÇómµÄÖµ¼°A¡¢BÁ½µãµÄ×ø±ê£»
£¨2£©ÈçͼËùʾ£¬½«Å×ÎïÏß¡°y=x2¡±¸ÄΪ¡°y=x2-2x+2¡±£¬Ö±ÏßCD¾¹ýÅ×ÎïÏߵĶ¥µãPÓëxÖáÆ½ÐУ¬ÆäËü¹ØÏµ²»±ä£¬ÇómµÄÖµ¼°A¡¢BÁ½µãµÄ×ø±ê£®
£¨3£©ÈçͼËùʾ£¬½«Í¼ÖеĸÄΪ¡°y=ax2+bx+c£¨a£¾0£©£¬ÆäËü¹ØÏµ²»±ä£¬ÇëÖ±½Óд³ömµÄÖµ¼°A¡¢BÁ½
[Ìáʾ£ºÅ×ÎïÏßy=ax2+bx+cµÄ¶¥µã×ø±êΪ£¨-
| b |
| 2a |
| 4ac-b2 |
| 4a |
| b |
| 2a |
·ÖÎö£º£¨1£©ÀûÓÃÕý·½ÐεÄÐÔÖʺͶþ´Îº¯ÊýµÄ¶Ô³ÆÐÔ½â´ðµÚÒ»ÎÊ£»
£¨2£©ÓÃÅä·½·¨Çó³öy=x2-2x+2µÄ¶¥µã×ø±ê£¬ÓÃm±íʾA¡¢BÁ½µãµÄ×ø±ê£®°ÑÆäÖÐÒ»µã´úÈ뺯Êý½âÎöʽ£¬Çó³ömµÄÖµ£¬ÎÊÌâµÃ½â£»
£¨3£©ÏÈÓÉÅ×ÎïÏßy=ax2£¬ÇóµÃm=
£¬A£¨
£¬
£©£¬B£¨-
£¬
£©£¬ÔÙÓÉÅ×ÎïÏßy=ax2+bx+c¶¥µã×ø±ê£¨-
£¬
£©Æ½ÒÆÕûÀí¼´µÃ£®
£¨2£©ÓÃÅä·½·¨Çó³öy=x2-2x+2µÄ¶¥µã×ø±ê£¬ÓÃm±íʾA¡¢BÁ½µãµÄ×ø±ê£®°ÑÆäÖÐÒ»µã´úÈ뺯Êý½âÎöʽ£¬Çó³ömµÄÖµ£¬ÎÊÌâµÃ½â£»
£¨3£©ÏÈÓÉÅ×ÎïÏßy=ax2£¬ÇóµÃm=
| 4 |
| a |
| 2 |
| a |
| 4 |
| a |
| 2 |
| a |
| 4 |
| a |
| b |
| 2a |
| 4ac-b2 |
| 4a |
½â´ð£º½â£º£¨1£©¡ßËıßÐÎABCDÊÇÕý·½ÐΣ¬ÓÉÅ×ÎïÏßy=x2µÄ¶Ô³ÆÐÔ¿ÉÖª£¬OD=
AD
¡àÉèµãA×ø±êΪ£¨
m£¬m£©£¬
´úÈëy=x2£¬
µÃm=(
m)2
½âµÃm1=0£¨ÉáÈ¥£©£¬m2=4£¬
¡àmµÄÖµÊÇ4£¬µãAµÄ×ø±êΪ£¨2£¬4£©£¬
ÓÉÅ×ÎïÏߵĶԳÆÐÔ£¬¿ÉµÃBµã×ø±êΪ£¨-2£¬4£©£»
£¨2£©Èçͼ£¬
¡ßy=x2-2x+2=£¨x-1£©2+1£¬
¡àÅ×ÎïÏߵĶ¥µãP×ø±êΪ£¨1£¬1£©£¬
ÓÉÌâÒ⣬µãAµÄ×Ý×ø±êΪm£¬
¡àAD=m-1£¬
ÉèÖ±ÏßCDÓëyÖá½»µãΪQ£¬
ÔòDQ=
+1=
m+
£¬
¡àµãAµÄ×ø±êΪ£¨
m+
£¬m£©£¬
´úÈëy=x2-2x+2ÖУ¬
ÕûÀíµÃm2-6m+5=0£¬
½âµÃm1=1£¨ÉáÈ¥£©£¬m2=5£¬
¡àmµÄֵΪ5£¬µãAµÄ×ø±êΪ£¨3£¬5£©
¡àÓÉÅ×ÎïÏߵĶԳÆÐÔ£¬¿ÉÇóµÃµãBµÄ×ø±êΪ£¨-1£¬5£©£»
£¨3£©m=
£¬
A£¨
£¬
£©£¬
B£¨
£¬
£©£¬
ÓÉÅ×ÎïÏßy=ax2£¬ÇóµÃm=
£¬
A¡¢BÁ½µã×ø±êΪA£¨
£¬
£©£¬B£¨-
£¬
£©£¬
°ÑA¡¢BÁ½µãÏÈÓÒÒÆ£¨-
£©¸öµ¥Î»£¬ÔÙÉÏÒÆ£¨
£©¸öµ¥Î»£¬
ÕûÀíµÃA£¨
£¬
£©£¬B£¨
£¬
£©£®
| 1 |
| 2 |
¡àÉèµãA×ø±êΪ£¨
| 1 |
| 2 |
´úÈëy=x2£¬
µÃm=(
| 1 |
| 2 |
½âµÃm1=0£¨ÉáÈ¥£©£¬m2=4£¬
¡àmµÄÖµÊÇ4£¬µãAµÄ×ø±êΪ£¨2£¬4£©£¬
ÓÉÅ×ÎïÏߵĶԳÆÐÔ£¬¿ÉµÃBµã×ø±êΪ£¨-2£¬4£©£»
£¨2£©Èçͼ£¬
¡àÅ×ÎïÏߵĶ¥µãP×ø±êΪ£¨1£¬1£©£¬
ÓÉÌâÒ⣬µãAµÄ×Ý×ø±êΪm£¬
¡àAD=m-1£¬
ÉèÖ±ÏßCDÓëyÖá½»µãΪQ£¬
ÔòDQ=
| m-1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
¡àµãAµÄ×ø±êΪ£¨
| 1 |
| 2 |
| 1 |
| 2 |
´úÈëy=x2-2x+2ÖУ¬
ÕûÀíµÃm2-6m+5=0£¬
½âµÃm1=1£¨ÉáÈ¥£©£¬m2=5£¬
¡àmµÄֵΪ5£¬µãAµÄ×ø±êΪ£¨3£¬5£©
¡àÓÉÅ×ÎïÏߵĶԳÆÐÔ£¬¿ÉÇóµÃµãBµÄ×ø±êΪ£¨-1£¬5£©£»
£¨3£©m=
| 4ac-b2+16 |
| 4a |
A£¨
| -b+4 |
| 2a |
| 4ac-b2+16 |
| 4a |
B£¨
| -b-4 |
| 2a |
| 4ac-b2+16 |
| 4a |
ÓÉÅ×ÎïÏßy=ax2£¬ÇóµÃm=
| 4 |
| a |
A¡¢BÁ½µã×ø±êΪA£¨
| 2 |
| a |
| 4 |
| a |
| 2 |
| a |
| 4 |
| a |
°ÑA¡¢BÁ½µãÏÈÓÒÒÆ£¨-
| b |
| 2a |
| 4ac-b2 |
| 4a |
ÕûÀíµÃA£¨
| -b+4 |
| 2a |
| 4ac-b2+16 |
| 4a |
| -b-4 |
| 2a |
| 4ac-b2+16 |
| 4a |
µãÆÀ£º±¾ÌâÊǶþ´Îº¯ÊýµÄ×ÛºÏÌâÐÍ£¬ÆäÖÐÉæ¼°µ½µÄ֪ʶµãÓÐÅ×ÎïÏߵĶ¥µã¹«Ê½¡¢Å×ÎïÏߵĶԳÆÐÔ¼°Í¼ÏóµÄÆ½ÒÆ£¬¼ÆËãÖÐÒª½áºÏͼÐμ°Êµ¼ÊÇé¿ö½â´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿