题目内容
将不等式组的解集在数轴上表示,下列表示中正确的是
A. B. C. D.
如图,直线y=2x+2与y轴交于A点,与反比例函数y=(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.
(1)求k的值;
(2)在y轴上是否存在点B,使以点B、A、H、M为顶点的四边形是平行四边形?如果存在,求出B点坐标;如果不存在,请说明理由;
(3)点N(a,1)是反比例函数y=(x>0)图象上的点,在x轴上有一点P,使得PM+PN最小,请求出点P的坐标.
如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为( )
A. 35° B. 40° C. 50° D. 65°
如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=_______度.
如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y与容器内水深x间的函数关系的图象可能是( )
2014年3月,某海域发生航班失联事件,我海事救援部门用高频海洋探测仪进行海上搜救,分别在A、B两个探测点探测到C处是信号发射点,已知A、B两点相距400m,探测线与海平面的夹角分别是和,若CD的长是点C到海平面的最短距离.
问BD与AB有什么数量关系,试说明理由;
求信号发射点的深度结果精确到1m,参考数据:,
将一次函数的图象向下平移3个单位长度,相应的函数表达式为______.
某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.
(1)求购进甲、乙两种花卉,每盆各需多少元?
(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉x盆,全部销售后获得的利润为W元,求W与x之间的函数关系式;
(3)在(2)的条件下,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?
如图,有一个边长为2cm 的正六边形纸片,若在该纸片上剪一个最大圆形,则这个圆形纸片的直径是 ( ) .
A. cm B. 2cm C. 2cm D. 4cm