题目内容
我们已学会了用“两边夹”的方法,根据不同的精确度要求,估算
的取值范围,我们还可以用“逼近”的方法,求出它的近似值.
2-1.9881=0.0119,2.0164-2=0.0164,0.0119<0.0164
可见1.9881比2.0164更逼近2,当精确度为0.01时,
的近似值为1.41.
下面,我们用同样的方法估计方程x2+2x=6其中一个解的近似值.
根据上表,方程x2+2x=6的一个解约是
2 |
x | 1.40 | 1.41 | 1.42 | 1.43 | … |
x2 | 1.96 | 1.9881 | 2.0164 | 2.0449 | … |
可见1.9881比2.0164更逼近2,当精确度为0.01时,
2 |
下面,我们用同样的方法估计方程x2+2x=6其中一个解的近似值.
x | 1.63 | 1.64 | 1.65 | 1.66 | … |
x2+2x | 5.9169 | 5.9696 | 6.0225 | 6.0756 | … |
1.65
1.65
.(精确到0.01)分析:先根据表中所给的数,再与6相减,然后所得的值进行比较,差值越小的越接近方程的解.
解答:解:根据题意得:
6-5.9696=0.0304,
6.0225-6=0.0225,
0.0304>0.0225,
可见6.0225比5.9696更逼近6,
当精确度为0.01时,方程x2+2x=6的一个解约是1.65;
故答案为:1.65.
6-5.9696=0.0304,
6.0225-6=0.0225,
0.0304>0.0225,
可见6.0225比5.9696更逼近6,
当精确度为0.01时,方程x2+2x=6的一个解约是1.65;
故答案为:1.65.
点评:此题考查了估算一元二次方程的近似解,解题的关键是找出表中与6最接近的数,算出差额,再比较,相差越小的数越比较接近.
练习册系列答案
相关题目
我们已学会了用“两边夹”的方法,根据不同的精确度要求,估算的取值范围,我们还可以用“逼近”的方法,求出它的近似值.
x |
1.40 |
1.41 |
1.42 |
1.43 |
… |
x2 |
1.96 |
1.9881 |
2.0164 |
2.0449 |
… |
2-1.9881=0.0119,2.0164-2=0.0164,0.0119<0.0164
可见1.9881比2.0164更逼近2,当精确度为0.01时,的近似值为1.41.
下面,我们用同样的方法估计方程x2+2x=6其中一个解的近似值.
x |
1.63 |
1.64 |
1.65 |
1.66 |
… |
x2+2x |
5.9169 |
5.9696 |
6.0225 |
6.0756 |
… |
根据上表,方程x2+2x=6的一个解约是______________.(精确到0.01)
我们已学会了用“两边夹”的方法,根据不同的精确度要求,
估算的取值范围,我们还可以用“逼近”的方法,求出它的近似值.
x | 1.40 | 1.41 | 1.42 | 1.43 | … |
x2 | 1.96 | 1.9881 | 2.0164 | 2.0449 | … |
2-1.9881=0.0119,2.0164-2=0.0164,0.0119<0.0164
可见1.9881比2.0164更逼近2,当精确度为0.01时,的近似值为1.41.
下面,我们用同样的方法估计方程x2+2x=6其中一个解的近似值.
x | 1.63 | 1.64 | 1.65 | 1.66 | … |
x2+2x | 5.9169 | 5.9696 | 6.0225 | 6.0756 | … |
根据上表,方程x2+2x=6的一个解约是______________.(精确到0.01)
我们已学会了用“两边夹”的方法,根据不同的精确度要求,估算的取值范围,我们还可以用“逼近”的方法,求出它的近似值.
x | 1.40 | 1.41 | 1.42 | 1.43 | … |
x2 | 1.96 | 1.9881 | 2.0164 | 2.0449 | … |
可见1.9881比2.0164更逼近2,当精确度为0.01时,的近似值为1.41.
下面,我们用同样的方法估计方程x2+2x=6其中一个解的近似值.
x | 1.63 | 1.64 | 1.65 | 1.66 | … |
x2+2x | 5.9169 | 5.9696 | 6.0225 | 6.0756 | … |