题目内容
如图,在等腰三角形ABC中,延长AB到点D,延长CA到点E,且AE=BD,连接DE.如果AD=BC=CE=DE,求∠BAC的度数.
过D作DF∥BC,且使DF=BC,连CF、EF,则四边形BDFC是平行四边形,
∴BD=CF,DA∥FC,
∴∠EAD=∠ECF,
∵AD=CE,AE=BD=CF,
∴△ADE≌△CEF(SAS)
∴ED=EF,
∵ED=BC,BC=DF,
∴ED=EF=DF
∴△DEF为等边三角形
设∠BAC=x°,则∠ADF=∠ABC=
,
∴∠DAE=180°-x°,
∴∠ADE=180°-2∠DAE=180°-2(180°-x°)=2x°-180°,
∵∠ADF+∠ADE=∠EDF=60°
∴
+(2x°-180°)=60°
∴x=100.
∴∠BAC=100°.
∴BD=CF,DA∥FC,
∴∠EAD=∠ECF,
∵AD=CE,AE=BD=CF,
∴△ADE≌△CEF(SAS)
∴ED=EF,
∵ED=BC,BC=DF,
∴ED=EF=DF
∴△DEF为等边三角形
设∠BAC=x°,则∠ADF=∠ABC=
180°-x° |
2 |
∴∠DAE=180°-x°,
∴∠ADE=180°-2∠DAE=180°-2(180°-x°)=2x°-180°,
∵∠ADF+∠ADE=∠EDF=60°
∴
180°-x° |
2 |
∴x=100.
∴∠BAC=100°.
练习册系列答案
相关题目