题目内容
若关于x的分式方程-1=无解,求m的值.
(1) (2)
某商场在世界杯足球比赛期间举行促销活动,并设计了两种方案:一种是以商品价格的九五折优惠的方式进行销售;一种是采用有奖销售的方式,具体措施是:①有奖销售自2009年6月9日起,发行奖券10000张,发完为止;②顾客累计购物满400元,赠送奖券一张(假设每位顾客购物每次都恰好凑足400元);③世界杯后,顾客持奖券参加抽奖;④奖项是:特等奖2名,各奖3000元奖品;一等奖10名,各奖1000元奖品;二等奖20名,各奖300元奖品;三等奖100名,各奖100元奖品;四等奖200名,各奖50元奖品;纪念奖5000名,各奖10元奖品,试就商场的收益而言,对两种促销方法进行评价,选用哪一种更为合算?
若,则实数a在数轴上的对应点一定在( )
A. 原点左侧 B. 原点右侧
C. 原点或原点左侧 D. 原点或原点右侧
材料一:一个正整数x能写成x=a2﹣b2(a,b均为正整数,且a≠b),则称x为“雪松数”,a,b为x的一个平方差分解,在x的所有平方差分解中,若a2+b2最大,则称a,b为x的最佳平方差分解,此时F(x)=a2+b2.
例如:24=72﹣52,24为雪松数,7和5为24的一个平方差分解,32=92﹣72,32=62﹣22,因为92+72>62+22,所以9和7为32的最佳平方差分解,F(32)=92+72
材料二:若一个四位正整数,它的千位数字与个位数字相同,百位数字与十位数字相同,但四个数字不全相同,则称这个四位数为“南麓数”.例如4334,5665均为“南麓数”.
根据材料回答:
(1)请直接写出两个雪松数,并分别写出它们的一对平方差分解;
(2)试证明10不是雪松数;
(3)若一个数t既是“雪松数”又是“南麓数”,并且另一个“南麓数”的前两位数字组成的两位数与后两位数字组成的两位数恰好是t的一个平方差分解,请求出所有满足条件的数t中F(t)的最大值.
先化简,后求值:,其中x =.
(2)解方程:
如图,在平行四边形ABCD中,,的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,,垂足为G,若,则AE的边长为
A. B. C. 4 D. 8
若(2x﹣3y+5)2+|x+y﹣2|=0,则x=_____,y=_____.
下列图案属于轴对称图形的是( )
A. B. C. D.