题目内容

【题目】图形既关于点O中心对称,又关于直线AC,BD对称,AC=10,BD=6,已知点E,M是线段AB上的动点(不与端点重合),点O到EF,MN的距离分别为h1 , h2 , △OEF与△OGH组成的图形称为蝶形.
(1)求蝶形面积S的最大值;
(2)当以EH为直径的圆与以MQ为直径的圆重合时,求h1与h2满足的关系式,并求h1的取值范围.

【答案】
(1)解:由题意,得四边形ABCD是菱形.

∵EF∥BD,

∴△ABD∽△AEF,

,即

所以当 时,


(2)解:根据题意,得OE=OM.

如图,作OR⊥AB于R,OB关于OR对称线段为OS,

① 当点E,M不重合时,则OE,OM在OR的两侧,易知RE=RM.

由ML∥EK∥OB,

,此时h1的取值范围为

②当点E,M重合时,则h1=h2,此时h1的取值范围为0<h1<5.


【解析】(1)由题意,得四边形ABCD是菱形,根据EF∥BD,求证△ABD∽△AEF,然后利用其对边成比例求得EF,然后利用三角形面积公式即可求得蝶形面积S的最大值.(2)根据题意,得OE=OM.作OR⊥AB于R,OB关于OR对称线段为OS,①当点E,M不重合时,则OE,OM在OR的两侧,可知RE=RM.利用勾股定理求得BR,由ML∥EK∥OB,利用平行线分线段求得 即可知h1的取值范围;②当点E,M重合时,则h1=h2 , 此时可知h1的取值范围.
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对轴对称的性质的理解,了解关于某条直线对称的两个图形是全等形;如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线;两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网