题目内容
【题目】图形既关于点O中心对称,又关于直线AC,BD对称,AC=10,BD=6,已知点E,M是线段AB上的动点(不与端点重合),点O到EF,MN的距离分别为h1 , h2 , △OEF与△OGH组成的图形称为蝶形.
(1)求蝶形面积S的最大值;
(2)当以EH为直径的圆与以MQ为直径的圆重合时,求h1与h2满足的关系式,并求h1的取值范围.
【答案】
(1)解:由题意,得四边形ABCD是菱形.
∵EF∥BD,
∴△ABD∽△AEF,
∴ ,即
∴
所以当 时,
(2)解:根据题意,得OE=OM.
如图,作OR⊥AB于R,OB关于OR对称线段为OS,
① 当点E,M不重合时,则OE,OM在OR的两侧,易知RE=RM.
∵ ,
∴ ,
∴
由ML∥EK∥OB,
得 ∴ ,
即
∴ ,此时h1的取值范围为 且 ,
②当点E,M重合时,则h1=h2,此时h1的取值范围为0<h1<5.
【解析】(1)由题意,得四边形ABCD是菱形,根据EF∥BD,求证△ABD∽△AEF,然后利用其对边成比例求得EF,然后利用三角形面积公式即可求得蝶形面积S的最大值.(2)根据题意,得OE=OM.作OR⊥AB于R,OB关于OR对称线段为OS,①当点E,M不重合时,则OE,OM在OR的两侧,可知RE=RM.利用勾股定理求得BR,由ML∥EK∥OB,利用平行线分线段求得 即可知h1的取值范围;②当点E,M重合时,则h1=h2 , 此时可知h1的取值范围.
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对轴对称的性质的理解,了解关于某条直线对称的两个图形是全等形;如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线;两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上.
【题目】我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼,有关成本、销售情况如下表:
养殖种类 | 成本(万元/亩) | 销售额(万元/亩) |
甲鱼 | 2.4 | 3 |
桂鱼 | 2 | 2.5 |
(1)2010年,王大爷养殖甲鱼20亩,桂鱼10亩,求王大爷这一年共收益多少万元?(收益=销售额﹣成本)
(2)2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2010年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?
(3)已知甲鱼每亩需要饲料500kg,桂鱼每亩需要饲料700kg,根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每次装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需要全部饲料比原计划减少了2次,求王大爷原定的运输车辆每次可装载饲料多少千克?
【题目】为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分
分组 | 家庭用水量x/吨 | 家庭数/户 |
A | 0≤x≤4.0 | 4 |
B | 4.0<x≤6.5 | 13 |
C | 6.5<x≤9.0 | |
D | 9.0<x≤11.5 | |
E | 11.5<x≤14.0 | 6 |
F | x>4.0 | 3 |
根据以上信息,解答下列问题
(1)家庭用水量在4.0<x≤6.5范围内的家庭有户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是%;
(2)本次调查的家庭数为户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是%;
(3)家庭用水量的中位数落在组;
(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.