题目内容

【题目】在△ABC中,AB=BC,∠B=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.

(1)如果点D在线段BC上运动,如图1:
①依题意补全图1;
②求证:∠BAD=∠EDC;
③通过观察、实验,小明得出结论:在点D运动的过程中,总有∠DCE=135°,.
小明与同学讨论后,形成了证明这个结论的几种想法:
想法一:在AB上取一点F,使得BF=BD,要证∠DCE=135°,只需证△ADF≌△DEC.
想法二:以点D为圆心,DC为半径画弧交AC于点F,要证∠DCE=135°,只需证△AFD≌△DCE.
想法三:过点E作BC所在直线的垂直线段EF,要证∠DCE=135°,只需证EF=CF.

请你参考上面的想法,证明∠DCE=135°
(2)如果点D在线段CB的延长线上运动,利用图2画图分析,∠DCE的度数还是确定的值吗?如果是,直接写出∠DCE的度数;如果不是,说明理由.

【答案】
(1)

解:①如图①所示;

②证明:∵∠B=90°,

∴∠BAD+∠BDA=90°,

∵∠ADE=90°,点D在线段BC上,

∴∠BAD+∠EDC=90°,

∴∠BAD=∠EDC;

②证法1:如图1,在AB上取点F,使得BF=BD,连接DF,

∵BF=BD,∠B=90°,

∴∠BFD=45°,

∴∠AFD=135°,

∵BA=BC,

∴AF=CD,

在△ADF和△DEC中,

∴△ADF≌△DEC,

∴∠DCE=∠AFD=135°;

证法2:以D为圆心,DC为半径作弧交AC于点F,连接DF,

∴DC=DF,∠DFC=∠DCF,

∵∠B=90°,AB=BC,

∴∠ACB=45°,∠DFC=45°,

∴∠DFC=90°,∠AFD=135°,

∵∠ADE=∠FDC=90°,

∴∠ADF=∠EDC,

在△ADF≌△CDE中,

∴△ADF≌△CDE,

∴∠AFD=∠DCE=135°;

证法3:过点E作EF⊥BC交BC的延长线于点F,

∴∠EFD=90°,

∵∠B=90°,

∴∠EFD=∠B,

在△ABD和△DFE中,

∴△ABD≌△DFE,

∴AB=DF,BD=EF,

∵AB=BC,

∴BC=DF,BC﹣DC=DF﹣DC,

即BD=CF,

∴EF=CF,

∵∠EFC=90°,

∴∠ECF=45°,∠DCE=135°;


(2)

解:解:∠DCE=45°,

理由:过E作EF⊥DC于F,

∵∠ABD=90°,

∴∠EDF=∠DAB=90°﹣∠ADB,

在△ABD和△DFE中,

∴△ABD≌△DFE,

∴DB=EF,AB=DF=BC,

∴BC﹣BF=DF﹣BF,

即FC=DB,

∴FC=EF,

∴∠DCE=45°.


【解析】(1)①根据题意作出图形即可;②根据余角的性质得到结论;③证法1:如图1,在AB上取点F,使得BF=BD,连接DF,根据等腰直角三角形的性质得到∠BFD=45°,根据全等三角形的性质得到∠DCE=∠AFD=135°;证法2:以D为圆心,DC为半径作弧交AC于点F,连接DF,根据全等三角形的性质即可得到结论;证法3:过点E作EF⊥BC交BC的延长线于点F,根据全等三角形的性质即可得到结论;(2)过E作EF⊥DC于F,根据全等三角形的性质得到DB=EF,AB=DF=BC,根据线段的和差得到FC=EF,于是得到结论.
【考点精析】利用全等三角形的性质和旋转的性质对题目进行判断即可得到答案,需要熟知全等三角形的对应边相等; 全等三角形的对应角相等;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网