题目内容
如图,在对Rt△OAB依次进行位似、轴对称和平移变换后得到△O′A′B′.(1)在坐标纸上画出这几次变换相应的图形;
(2)设P(x,y)为△OAB边上任一点,依次写出这几次变换后点P对应点的坐标.
【答案】分析:分别根据位似变换、轴对称、平移的作图方法作图即可;根据这些变换的特点可求出变换后点P对应点的坐标.
解答:解:(1)如图.先把△ABC作位似变换,扩大2倍,再作关于y轴对称的三角形,然后向右平移4个单位,再向上平移5个单位.
(2)设坐标纸中方格边长为单位1,则P(x,y)以O为位似中心放大为原来的2倍(2x,2y),经y轴翻折得到(-2x,2y),再向右平移4个单位得到(-2x+4,2y),再向上平移5个单位得到(-2x+4,2y+5).
点评:本题主要考查:位似变换、轴对称、平移.此题隐含着逆向思维.
解答:解:(1)如图.先把△ABC作位似变换,扩大2倍,再作关于y轴对称的三角形,然后向右平移4个单位,再向上平移5个单位.
(2)设坐标纸中方格边长为单位1,则P(x,y)以O为位似中心放大为原来的2倍(2x,2y),经y轴翻折得到(-2x,2y),再向右平移4个单位得到(-2x+4,2y),再向上平移5个单位得到(-2x+4,2y+5).
点评:本题主要考查:位似变换、轴对称、平移.此题隐含着逆向思维.
练习册系列答案
相关题目