题目内容
分解因式
①4xy2-4x2y-y3
②16-(2a+3b)2
③x6-1
④x2-7x-60.
①4xy2-4x2y-y3
②16-(2a+3b)2
③x6-1
④x2-7x-60.
分析:①先提取公因式-y,再对余下的多项式利用完全平方公式继续分解;
②利用平方差公式分解因式即可;
③利用平方差公式分解因式即可;
④把-60分成-12×5,利用十字相乘法分解因式即可.
②利用平方差公式分解因式即可;
③利用平方差公式分解因式即可;
④把-60分成-12×5,利用十字相乘法分解因式即可.
解答:解:①4xy2-4x2y-y3
=-y(4x2-4xy+y2)
=-y(2x-y)2;
②16-(2a+3b)2=(4+2a+3b)(4-2a-3b);
③x6-1=(x3+1)(x3-1);
④x2-7x-60=(x-12)(x+5).
=-y(4x2-4xy+y2)
=-y(2x-y)2;
②16-(2a+3b)2=(4+2a+3b)(4-2a-3b);
③x6-1=(x3+1)(x3-1);
④x2-7x-60=(x-12)(x+5).
点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
练习册系列答案
相关题目