题目内容

平面内两条直线相交有1个交点,三条直线相交最多有3个交点,四条直线相交最多有6个交点,…,若有20条直线相交,交点个数最多有(     )个.


  1. A.
    380
  2. B.
    190
  3. C.
    400
  4. D.
    200
B
分析:画出图形,根据具体图形求出两条直线相交、三条直线相交、四条直线相交时的交点个数,总结出规律,即可计算出20条直线相交时的交点个数.
解答:解:如图:2条直线相交有1个交点;
3条直线相交有1+2个交点;
4条直线相交有1+2+3个交点;
5条直线相交有1+2+3+4个交点;
6条直线相交有1+2+3+4+5个交点;

n条直线相交有1+2+3+…+n=个交点;
∴20条直线相交有=190个交点.
故选B.
点评:此题考查了直线相交的交点个数,体现了从一般到特殊再到一般的认知规律,有一定的挑战性,可以激发同学们的学习兴趣.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网