题目内容

【题目】如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙0的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.

(1)求证:AD平分∠BAC;
(2)若AC=8,tan∠DAC= ,求⊙O的半径.

【答案】
(1)

证明:连接OD,

∵BC是⊙O的切线,

∴OD⊥BC,又∠C=90°,

∴OD∥AC,

∴∠ODA=∠CAD,

∵OA=OD,

∴∠ODA=∠OAD,

∴∠OAD=∠CAD,即AD平分∠BAC


(2)

解:连接CE,

∵AE是⊙O的直径,

∴∠ADE=90°,

∵∠OAD=∠CAD,tan∠DAC=

∴tan∠EAD=

∵tan∠DAC= ,AC=8,

∴CD=6,

由勾股定理得,AD= =10,

=

解得,DE=

∴AE= =

∴⊙O的半径为


【解析】(1)连接OD,根据切线的性质得到OD⊥BC,根据平行线的性质和等腰三角形的性质证明;(2)连接CE,根据正切的定义和勾股定理求出AD,根据正切的定义计算即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网