题目内容
【题目】如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙0的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.
(1)求证:AD平分∠BAC;
(2)若AC=8,tan∠DAC= ,求⊙O的半径.
【答案】
(1)
证明:连接OD,
∵BC是⊙O的切线,
∴OD⊥BC,又∠C=90°,
∴OD∥AC,
∴∠ODA=∠CAD,
∵OA=OD,
∴∠ODA=∠OAD,
∴∠OAD=∠CAD,即AD平分∠BAC
(2)
解:连接CE,
∵AE是⊙O的直径,
∴∠ADE=90°,
∵∠OAD=∠CAD,tan∠DAC= ,
∴tan∠EAD= ,
∵tan∠DAC= ,AC=8,
∴CD=6,
由勾股定理得,AD= =10,
∴ = ,
解得,DE= ,
∴AE= = ,
∴⊙O的半径为 .
【解析】(1)连接OD,根据切线的性质得到OD⊥BC,根据平行线的性质和等腰三角形的性质证明;(2)连接CE,根据正切的定义和勾股定理求出AD,根据正切的定义计算即可.
练习册系列答案
相关题目