题目内容
【题目】如图,△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB,延长AC至E,使CE=AC.
(1)求证:DE=DB;
(2)连接BE,试判断△ABE的形状,并说明理由.
【答案】(1)证明见解析(2)△ABE是等边三角形
【解析】
(1)由直角三角形的性质和角平分线得出∠DAB=∠ABC,得出DA=DB,再由线段垂直平分线的性质得出DE=DA,即可得出结论;(2)由线段垂直平分线的性质得出BA=BE,再由∠CAB=60°,即可得出△ABE是等边三角形.
(1)证明:∵∠ACB=90°,∠ABC=30°,
∴BC⊥AE,∠CAB=60°,
∵AD平分∠CAB,
∴∠DAB=∠CAB=30°=∠ABC,
∴DA=DB,
∵CE=AC,
∴BC是线段AE的垂直平分线,
∴DE=DA,
∴DE=DB;
(2)△ABE是等边三角形;理由如下:
连接BE,如图:
∵BC是线段AE的垂直平分线,
∴BA=BE,
即△ABE是等腰三角形,
又∵∠CAB=60°,
∴△ABE是等边三角形.
练习册系列答案
相关题目