题目内容
当![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103202454683982728/SYS201311032024546839827010_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103202454683982728/SYS201311032024546839827010_ST/1.png)
【答案】分析:先将分式的分子和分母分别分解因式,约分化简,然后将x的值代入化简后的代数式即可求值.
解答:解:
-1
=
-1
=
-![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103202454683982728/SYS201311032024546839827010_DA/3.png)
=![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103202454683982728/SYS201311032024546839827010_DA/4.png)
=
,将x=
代入上式中得,
原式=
=
=
.
故答案为:
.
点评:本题主要考查分式求值方法之一:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.
解答:解:
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103202454683982728/SYS201311032024546839827010_DA/0.png)
=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103202454683982728/SYS201311032024546839827010_DA/1.png)
=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103202454683982728/SYS201311032024546839827010_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103202454683982728/SYS201311032024546839827010_DA/3.png)
=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103202454683982728/SYS201311032024546839827010_DA/4.png)
=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103202454683982728/SYS201311032024546839827010_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103202454683982728/SYS201311032024546839827010_DA/6.png)
原式=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103202454683982728/SYS201311032024546839827010_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103202454683982728/SYS201311032024546839827010_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103202454683982728/SYS201311032024546839827010_DA/9.png)
故答案为:
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103202454683982728/SYS201311032024546839827010_DA/10.png)
点评:本题主要考查分式求值方法之一:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目