题目内容
【题目】如图,在平面直角坐标系中,△AOB中,∠AOB=90°,∠ABO=30°,顶点A在反比例函y=(x>0)上运动,此时顶点B也在反比例函数y=上运动,则m的值为( )
A.-9B.-12C.-15D.-18
【答案】A
【解析】
根据∠AOB=90°,∠ABO=30°,可求出OA与OB的比,设出点B的坐标,再根据相似三角形的性质,求出点A的坐标,可得ab的值,进而求出m的值.
解:过A、B分别作AM⊥x轴,BN⊥x轴,垂足为M、N,
∵∠AOB=90°,∠ABO=30°,
∴tan30°=,
∵∠BON+∠AOM=90°,∠BON+∠OBN=90°,
∴∠OBN=∠AOM,
∵∠BNO=∠AMO=90°,
∴△BNO∽△OMA,
∴,
∴设ON=a,BN=b,则AM=,OM=,
∴B(-a,b),A(,),
∵点A在反比例函数y=上,
则×=3,
∴ab=9,
∵点B在反比例函数y=上,
∴-a×b=m=-9,
故选A.
【题目】城有肥料,城有肥料.现要把这些肥料全部运往、两乡,乡需要肥料240t,乡需要肥料,其运往、两乡的运费如下表:
两城/两乡 | C/(元/) | D/(元/) |
20 | 24 | |
15 | 17 |
设从城运往乡的肥料为,从城运往两乡的总运费为元,从城运往两乡的总运费为元
(1)分别写出、与之间的函数关系式(不要求写自变量的取值范围);
(2)试比较、两城总运费的大小;
(3)若城的总运费不得超过4800元,怎样调运使两城总费用的和最少?并求出最小值.
【题目】某校组织全校学生进行了一次“社会主义核心价值观”知识竞赛,赛后随机抽取了各年级部分学生成绩进行统计,制作如下频数分布表和频数分布直方图.请根据图表中提供的信息,解答下列问题:
分数段(表示分数) | 频数 | 频率 |
4 | 0.1 | |
8 | ||
0.3 | ||
10 | 0.25 | |
6 | 0.15 |
(1)请求出该校随机抽取了____学生成绩进行统计;
(2)表中____,____,并补全直方图;
(3)若用扇形统计图描述此成绩统计分布情况,则分数段对应扇形的圆心角度数是___;
(4)若该校共有学生8000人,请估计该校分数在的学生有多少人?