题目内容
(2002•荆门)如图,在△ABE和△ACD中,给出以下四个论断:(1)AB=AC;(2)AD=AE;(3)AM=AN;(4)AD⊥DC,AE⊥BE.
以其中三个论断为题设,填入下面的“已知”栏中,一个论断为结论,填入下面的“求证”栏中,使之组成一个真命题,并写出证明过程.
【答案】分析:本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件证明全等.利用全等三角形对应角,对应边相等解题.
解答:解:(1)已知:如图,在△ABE和△ACD中,AD=AE;AM=AN;AD⊥DC,AE⊥BE.
求证:AB=AC.
证明:∵AD⊥DC,AE⊥BE,
∴∠D=∠E=90°.
在Rt△ADM和Rt△AEN中,
,
∴△ADM≌△AEN(HL).
∴∠DAM=∠EAN.
∴∠DAC=∠EAB.
在△DAC与△EAB中,
∴△DAC≌△EAB(ASA).
∴AB=AC.
(2)已知:如图,在△ABE和△ACD中,AB=AC,AD=AE,AD⊥DC,AE⊥BE.求证:AM=AN.
证明:AD⊥DC,AE⊥BE,
∴∠D=∠E=90°.
在Rt△ACD和Rt△ABE中,
,
∴Rt△ACD≌Rt△ABE(HL),
∴∠CAD=∠BAE,
∴∠DAM=∠EAN.
在△ADM和△AEN中,
,
∴△ADM≌△AEN(ASA),
∴AM=AN.
(3)已知:如图,在△ABE和△ACD中,AB=AC,AM=AN,AD⊥DC,AE⊥BE.
求证:AD=AE.
证明:在△AMC和△ANB中,
,
∴△AMC≌△ANB(SAS),
∴∠C=∠B,
在△ACD和△ABE中,
,
∴△ACD≌△ABE(AAS),
∴AD=AE.
点评:本题考查三角形全等的识别方法及全等三角形的判定与性质,做题时思考要全面,答案有多种.
解答:解:(1)已知:如图,在△ABE和△ACD中,AD=AE;AM=AN;AD⊥DC,AE⊥BE.
求证:AB=AC.
证明:∵AD⊥DC,AE⊥BE,
∴∠D=∠E=90°.
在Rt△ADM和Rt△AEN中,
,
∴△ADM≌△AEN(HL).
∴∠DAM=∠EAN.
∴∠DAC=∠EAB.
在△DAC与△EAB中,
∴△DAC≌△EAB(ASA).
∴AB=AC.
(2)已知:如图,在△ABE和△ACD中,AB=AC,AD=AE,AD⊥DC,AE⊥BE.求证:AM=AN.
证明:AD⊥DC,AE⊥BE,
∴∠D=∠E=90°.
在Rt△ACD和Rt△ABE中,
,
∴Rt△ACD≌Rt△ABE(HL),
∴∠CAD=∠BAE,
∴∠DAM=∠EAN.
在△ADM和△AEN中,
,
∴△ADM≌△AEN(ASA),
∴AM=AN.
(3)已知:如图,在△ABE和△ACD中,AB=AC,AM=AN,AD⊥DC,AE⊥BE.
求证:AD=AE.
证明:在△AMC和△ANB中,
,
∴△AMC≌△ANB(SAS),
∴∠C=∠B,
在△ACD和△ABE中,
,
∴△ACD≌△ABE(AAS),
∴AD=AE.
点评:本题考查三角形全等的识别方法及全等三角形的判定与性质,做题时思考要全面,答案有多种.
练习册系列答案
相关题目