题目内容
【题目】如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.请将解题过程填写完整.
解:∵EF∥AD(已知)
∴∠2=∠3 )---①
又∵∠1=∠2(已知)
∴∠1=∠3( )----②
∴AB∥______( )----③
∴∠BAC+∠AGD=180°( )----④
∵∠BAC=70°(已知)
∴∠AGD=1800-700=1100
【答案】∠3;两直线平行,同位角相等;等量代换;DG,内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110°.
【解析】试题分析:由EF与AD平行,利用两直线平行,同位角相等得到一对角相等,再由已知角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到AB与DG平行,利用两直线平行同旁内角互补得到两个角互补,即可求出所求角的度数.
解:∵EF∥AD(已知),
∴∠2=∠3(两直线平行,同位角相等),
又∵∠1=∠2(已知),
∴∠1=∠3(等量代换),
∴AB∥DG(内错角相等,两直线平行),
∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).
∵∠BAC=70°(已知),
∴∠AGD=110°.
故答案为:∠3;两直线平行,同位角相等;等量代换;DG,内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110°.
练习册系列答案
相关题目