题目内容
【题目】已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在BC边所在直线上, PE=PB.
(1)如图1,当点E在线段BC上时,
求证:①PE=PD,②PE⊥PD.
简析: 由正方形的性质,图1中有三对全等的三角形,
即△ABC≌△ADC,_______≌_______,和_______≌______,由全等三角形性质,结合条件中PE=PB,易证PE=PD.要证PE⊥PD,考虑到∠ECD = 90°,故在四边形PECD中,只需证∠PDC +∠PEC=______即可.再结合全等三角形和等腰三角形PBE的性质,结论可证.
(2)如图2,当点E在线段BC的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;
(3)若AB=1,当△PBE是等边三角形时,请直接写出PB的长.
【答案】(1)△PAB;△PAD;△PBC;△PDC,180°;(2)成立,证明见解析;(3)或.
【解析】
(1)根据题意推导即可得出结论.
(2)求证PE⊥PB ,PE=PB,由AC为对角线以及已知条件可先证明△PDC≌△PBC,得PD=PB, PB=PE,PE=PD.由△PDC≌△PBC可得出∠PDC=∠PBC,最后得出∠EPD=∠FCE=90°,即PE⊥PB.
(3) 分两种情况讨论当点P在线段AC的反向延长线上时,当点P在线段AC的延长线上时.
(1) 由正方形的性质,图1中有三对全等的三角形,
即△ABC≌△ADC,△PAB≌△PAD,和△PBC≌△PDC,由全等三角形性质,结合条件中PE=PB,易证PE=PD.要证PE⊥PD,考虑到∠ECD = 90°,故在四边形PECD中,只需证∠PDC +∠PEC=180°即可.再结合全等三角形和等腰三角形PBE的性质,结论可证.
(2)(1)中的结论成立.
①∵四边形ABCD是正方形,AC为对角线,
∴CD=CB,∠ACD=∠ACB,又 ∵PC=PC,
∴△PDC≌△PBC.
∴PD=PB.
∵PB=PE,
∴PE=PD.
②由①得△PDC≌△PBC.
∴∠PDC=∠PBC.
又∵PE=PB,
∴∠PBE=∠PEB.
∴∠PDC=∠PEB
如图,记DC与PE的交点为F,则∠PFD=∠CFE.
∴∠EPD=∠FCE=90°.
∴PE⊥PB.
(3) 如图,当点P在线段AC上时,过点P作PH⊥BC,垂足为H.设PB=x,则
,
∴,解得,
当点P在线段AC的反向延长线上时,同理可得;
当点P在线段AC的延长线上时,△PBE是等边三角形不成立.
综上,x=或.
【题目】 “赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
请结合图表完成下列各题:
(1)①表中a的值为 ,中位数在第 组;
②频数分布直方图补充完整;
(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.
组别 | 成绩x分 | 频数(人数) |
第1组 | 50≤x<60 | 6 |
第2组 | 60≤x<70 | 8 |
第3组 | 70≤x<80 | 14 |
第4组 | 80≤x<90 | a |
第5组 | 90≤x<100 | 10 |