题目内容
(2012•广元)某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把1200m3的生活垃圾运走.
(1)假如每天能运xm3,所需时间为y天,写出y与x之间的函数关系式;
(2)若每辆拖拉机一天能运12m3,则5辆这样的拖拉机要用多少天才能运完?
(3)在(2)的情况下,运了8天后,剩下的任务要在不超过6天的时间完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?
(1)假如每天能运xm3,所需时间为y天,写出y与x之间的函数关系式;
(2)若每辆拖拉机一天能运12m3,则5辆这样的拖拉机要用多少天才能运完?
(3)在(2)的情况下,运了8天后,剩下的任务要在不超过6天的时间完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?
分析:(1)根据每天能运xm3,所需时间为y天的积就是1200m3,即可写出函数关系式;
(2)把x=12×5=60代入,即可求得天数;
(3)首先算出8天以后剩余的数量,然后计算出6天运完所需的拖拉机数,即可求解.
(2)把x=12×5=60代入,即可求得天数;
(3)首先算出8天以后剩余的数量,然后计算出6天运完所需的拖拉机数,即可求解.
解答:解:(1)y=
;
(2)x=12×5=60,代入函数解析式得;y=
=20(天)
答:20天运完;
(3)运了8天后剩余的垃圾是1200-8×60=720m3.
剩下的任务要在不超过6天的时间完成则每天至少运720÷6=120m3,
则需要的拖拉机数是:120÷12=10(辆),
则至少需要增加10-5=5辆这样的拖拉机才能按时完成任务.
1200 |
x |
(2)x=12×5=60,代入函数解析式得;y=
1200 |
60 |
答:20天运完;
(3)运了8天后剩余的垃圾是1200-8×60=720m3.
剩下的任务要在不超过6天的时间完成则每天至少运720÷6=120m3,
则需要的拖拉机数是:120÷12=10(辆),
则至少需要增加10-5=5辆这样的拖拉机才能按时完成任务.
点评:本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义求解.
练习册系列答案
相关题目