题目内容
【题目】五张如图所示的长为,宽为的小长方形纸片,按如图的方式不重叠地放在矩形中,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为,当的长度变化时,按照同样的放置方式,始终保持不变,则,满足的关系式为( )
A.B.C.D.
【答案】A
【解析】
表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b的关系式
解:左上角阴影部分的长为AE,宽为AF=2b,右下角阴影部分的长为PC,宽为a,
∵AD=BC,即AE+ED=AE+a,BC=BP+PC=3b+PC,
∴AE+a=3b+PC,即AE-PC=3b-a,
∴阴影部分面积之差S=AEAF-PCCG=2b×AE-a×PC=2b(PC+3b-a)-aPC=(2b-a)PC+6b2-2ab,
则2b-a=0,即a=2b,
故选:A.
练习册系列答案
相关题目