题目内容

数码不相同的两位数,将其数码顺序交换后,得到一个新的两位数,这两个两位数的平方差是完全平方数,求所有这样的两位数.
分析:设十位数字为a,个位数字为b,这个两位数就为10a+b,交换位置后为10b+a,(10a+b)2-(10b+a)2=99(a+b)(a-b),因而a+b是11的倍数即a+b=11k,且(a-b)k是完全平方数,由此讨论得到解.
解答:解:设这个两位数十位数字为a,个位数字为b,
(10a+b)2-(10b+a)2=99(a+b)(a-b),
因为a、b是不同的数字,
由此得出a+b是11的倍数,即a+b=11k,由a≤9,b≤9,即a+b≤18,所以k=1,a+b=11,
(a-b)k是完全平方数,因此(a-b)可以为0,1,4,于是得到,
a+b=11
a-b=1
a+b=11
a-b=4
a+b=11
a-b=0

只有一组解符合要求,解得
a=6
b=5

因此这两位数有56,65共两个.
点评:本题考查的了完全平方数与整数的十进制表示法,关键是设出这个两位数的十位数字是a,个位数字是b,然后根据题意列方程求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网