题目内容

【题目】如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.

(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为   度;

(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;

(3)在上述直角三角板从图1逆时针旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值。

【答案】(1)90 (2)答案见解析 (3)4秒或16秒

【解析】

(1)根据旋转的性质知,旋转角是∠MON;

(2)如图3,利用平角的定义,结合已知条件“∠AOC:∠BOC=1:2”求得∠AOC=60°;然后由直角的性质、图中角与角间的数量关系推知∠AOM﹣∠NOC=30°;

(3)需要分类讨论:(ⅰ)当直角边ON在∠AOC外部时,旋转角是60°;(ⅱ)当直角边ON在∠AOC内部时,旋转角是240°

解:(1)由旋转的性质知,旋转角∠MON=90°.

故答案是:90;

(2)如图3,∠AOM﹣∠NOC=30°.

设∠AOC=α,由∠AOC:∠BOC=1:2可得

∠BOC=2α.

∵∠AOC+∠BOC=180°,

∴α+2α=180°.

解得 α=60°.

即∠AOC=60°.

∴∠AON+∠NOC=60°.①

∵∠MON=90°,

∴∠AOM+∠AON=90°.②

由②﹣①,得∠AOM﹣∠NOC=30°;

(3)(ⅰ)如图4,当直角边ON在∠AOC外部时,

由OD平分∠AOC,可得∠BON=30°.

因此三角板绕点O逆时针旋转60°.

此时三角板的运动时间为:

t=60°÷15°=4(秒).

(ⅱ)如图5,当直角边ON在∠AOC内部时,

由ON平分∠AOC,可得∠CON=30°.

因此三角板绕点O逆时针旋转240°.

此时三角板的运动时间为:

t=240°÷15°=16(秒).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网