题目内容
已知a,求
(1)的值;
(2)a3-a2-5a+2010的值.
解:(1)∵a,
∴=(a+)2-2=32-2=7
(2)a3-a2-5a+2010
=a3+a-a2-6a+2010
=a2(a+)-a2-6a+2010
=3a2-a2-6a+2010
=2a2-6a+2010
=2a2+2-6a+2008
=2a(a+)-6a+2008
=6a-6a+2008
=2008
分析:(1)将变形为(a+)2-2即可得到答案.
(2)将a3-a2-5a+2010变形为a2(a+)-a2-6a+2010代入a后进一步得到3a2-a2-6a+2010,再进一步变形后继续代入即可求得答案.
点评:本题考查了因式分解的应用及完全平方公式,解题的关键是熟悉因式分解的方法并正确的变形.
∴=(a+)2-2=32-2=7
(2)a3-a2-5a+2010
=a3+a-a2-6a+2010
=a2(a+)-a2-6a+2010
=3a2-a2-6a+2010
=2a2-6a+2010
=2a2+2-6a+2008
=2a(a+)-6a+2008
=6a-6a+2008
=2008
分析:(1)将变形为(a+)2-2即可得到答案.
(2)将a3-a2-5a+2010变形为a2(a+)-a2-6a+2010代入a后进一步得到3a2-a2-6a+2010,再进一步变形后继续代入即可求得答案.
点评:本题考查了因式分解的应用及完全平方公式,解题的关键是熟悉因式分解的方法并正确的变形.
练习册系列答案
相关题目