题目内容
如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是( )A.AB∥DC
B.AC=BD
C.AC⊥BD
D.AB=DC
【答案】分析:根据矩形的判定定理(有一个角为直角的平行四边形是矩形).先证四边形EFGH是平行四边形,要使四边形EFGH为矩形,需要∠EFG=90度.由此推出AC⊥BD.
解答:解:依题意得,四边形EFGH是由四边形ABCD各边中点连接而成,
连接AC、BD,故EF∥AC∥HG,EH∥BD∥FG,
所以四边形EFGH是平行四边形,
要使四边形EFGH为矩形,
根据矩形的判定(有一个角为直角的平行四边形是矩形)
故当AC⊥BD时,∠EFG=∠EHG=90度.四边形EFGH为矩形.
故选C.
点评:本题考查了矩形的判定定理:
(1)有一个角是直角的平行四边形是矩形.
(2)有三个角是直角的四边形是矩形.
(3)对角线互相平分且相等的四边形是矩形.难度一般.
解答:解:依题意得,四边形EFGH是由四边形ABCD各边中点连接而成,
连接AC、BD,故EF∥AC∥HG,EH∥BD∥FG,
所以四边形EFGH是平行四边形,
要使四边形EFGH为矩形,
根据矩形的判定(有一个角为直角的平行四边形是矩形)
故当AC⊥BD时,∠EFG=∠EHG=90度.四边形EFGH为矩形.
故选C.
点评:本题考查了矩形的判定定理:
(1)有一个角是直角的平行四边形是矩形.
(2)有三个角是直角的四边形是矩形.
(3)对角线互相平分且相等的四边形是矩形.难度一般.
练习册系列答案
相关题目
如图,顺次连接四边形ABCD各中点得四边形EFGH,要使四边形EFGH为菱形,应添加的条件是( )
A、AB∥DC | B、AB=DC | C、AC⊥BD | D、AC=BD |