题目内容

如图是某居民小区的一块直角三角形空地ABC,某斜边AB=100米,直角边AC=80米.现要利用这精英家教网块空地建一个矩形停车场DCFE,使得D点在BC边上,E、F分别是AB、AC边的中点.
(1)求另一条直角边BC的长度;
(2)求停车场DCFE的面积;
(3)为了提高空地利用律,现要在剩余的△BDE中,建一个半圆形的花坛,使它的圆心在BE边上,且使花坛的面积达到最大,请你在原图中画出花坛的草图,求出它的半径(不要求说明面积最大的理由),并求此时直角三角形空地ABC的总利用率是百分之几(精确到1%).
分析:(1)利用勾股定理可求出BC的长;
(2)由已知可得EF为△ABC的中位线,由中位线定理可知EF=
1
2
BC=
1
2
×60=30m,FC=
1
2
AC=
1
2
×80=40(米),可求出矩形的面积;
(3)如图,当花坛的面积达到最大时,半圆O与BD、DE相切,设切点分别为G、K,圆心为O,连接OG、OK,则OG⊥BD,OK⊥DE,OG=OK,即四边形OGDK为正方形,设OG=x,易证△OBG∽△ABC,根据其边长比可求出x的值,从而求出半圆的面积,得出结论.
解答:解:(1)由勾股定理得BC=
AB2-AC2
=
1002-802
=60(米),
∴另一条直角边BC的长为60米.

(2)由已知可得EF为△ABC的中位线,
∴EF=
1
2
BC=
1
2
×60=30(米),
又FC=
1
2
AC=
1
2
×80=40(米),
∴S矩形DCFE=EF•FC=30×40=1200(米2).

(3)如图,当花坛的面积达到最大时,半圆O与BD、DE相切,精英家教网
设切点分别为G、K,圆心为O,
连接OG、OK,则OG⊥BD,OK⊥DE,OG=OK,
又∵∠BDE=90°,
∴四边形OGDK为正方形.
设OG=x,
∵BD=BC-CD=60-30=30,
∴BG=BD-GD=30-x.
∵∠OGB=∠C=90°,∠B=∠B,
∴△OBG∽△ABC,
OG
BG
=
AC
BC

x
30-x
=
80
60
=
4
3
,解得x=
120
7

∴当花坛的面积达到最大时,其半径为
120
7
米.
∴直角三角形空地ABC的总利用率=[
1
2
π(
120
7
2+1200]÷(
1
2
×80×60)≈69%.
点评:本题考查相似三角形的判定与性质的实际应用及分析问题、解决问题的能力.
利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网