题目内容
如图,如图下列条件中,不能证明△ABD≌△ACD的是( )A.BD=DC,AB=AC
B.∠ADB=∠ADC,∠BAD=∠CAD
C.∠B=∠C,∠BAD=∠CAD
D.∠B=∠C,BD=DC
【答案】分析:根据全等三角形的判定方法分别进行分析即可.
解答:解:A、BD=DC,AB=AC,再加上公共边AD=AD可利用SSS定理判定△ABD≌△ACD,故此选项不合题意;
B、∠ADB=∠ADC,∠BAD=∠CAD再加上公共边AD=AD可利用ASA定理判定△ABD≌△ACD,故此选项不合题意;
C、∠B=∠C,∠BAD=∠CAD再加上公共边AD=AD可利用AAS定理判定△ABD≌△ACD,故此选项不合题意;
D、∠B=∠C,BD=DC再加上公共边AD=AD,没有ASS定理判定△ABD≌△ACD,故此选项符合题意;
故选:D.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
解答:解:A、BD=DC,AB=AC,再加上公共边AD=AD可利用SSS定理判定△ABD≌△ACD,故此选项不合题意;
B、∠ADB=∠ADC,∠BAD=∠CAD再加上公共边AD=AD可利用ASA定理判定△ABD≌△ACD,故此选项不合题意;
C、∠B=∠C,∠BAD=∠CAD再加上公共边AD=AD可利用AAS定理判定△ABD≌△ACD,故此选项不合题意;
D、∠B=∠C,BD=DC再加上公共边AD=AD,没有ASS定理判定△ABD≌△ACD,故此选项符合题意;
故选:D.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关题目