题目内容
【题目】已知:如图,和均为等腰直角三角形,,连结,,且、、三点在一直线上,,.
(1)求证:;
(2)求线段的长.
【答案】(1)详见解析;(2)
【解析】
(1)根据等式的基本性质可得∠DAB=∠EAC,然后根据等腰直角三角形的性质可得DA=EA,BA=CA,再利用SAS即可证出结论;
(2)根据等腰直角三角形的性质和勾股定理即可求出DE,从而求出EC和DC,再根据全等三角形的性质即可求出DB,∠ADB=∠AEC,从而求出∠BDC=90°,最后根据勾股定理即可求出结论.
证明:(1)∵
∴∠DAE-∠BAE=∠BAC-∠BAE
∴∠DAB=∠EAC
∵和均为等腰直角三角形
∴DA=EA,BA=CA
在△ADB和△AEC中
∴△ADB≌△AEC
(2)∵是等腰直角三角形,
∴DE=,
∵
∴EC=,
∴DC=DE+EC=3
∵△ADB≌△AEC
∴DB=EC=3,∠ADB=∠AEC
∵∠ADB=∠ADE+∠BDC,∠AEC=∠ADE+∠DAE=∠ADE+90°
∴∠BDC=90°
在Rt△BDC中,
练习册系列答案
相关题目