题目内容
【题目】如图,已知一次函数y1=kx+b的图象与反比例函数的图象交于A、B两点, 且点A的坐标为(-2,3),点B的纵坐标是-2,求:
(1)一次函数与反比例函数的解析式;
(2)利用图像指出,当为何值时有> ;当为何值时有<
(3)利用图像指出,当>3时的取值范围。
【答案】见解析
【解析】试题分析:(1)把A点坐标代入反比例函数解析式求出m的值,把B点的纵坐标代入反比例函数解析式求出B点的横坐标,再把A、B两点的坐标代入一次函数解析式求出k、b的值即可;
(2)根据A、B的横坐标,结合图象即可得出答案;
(3)求出x=3时y2的值,然后结合图象即可得出y2的取值范围.
试题解析:
解:(1)∵A(-2,3)在反比例函数y2=的图象上,
∴m=-2×3
=-6,
即反比例函数的解析式为y2=.
当y2=-2时,x=3,
即B(3,-2),
把A(-2,3),B(3,-2)代入y=kx+b得:
,
解得: ,
即一次函数的解析式为y=-x+1;
(2)结合图象可得y1>y2时对应的图象在点A的左侧和y轴与点B之间,
即x<-2或0<x<3;
同理y1<y2时对应的图象在点A与y轴之间和点B的右侧,
即-2<x<0或x>3;
(3)当x=3时,y2=-2,
当x>3时反比例函数对应的图象在点B的右侧部分,
对应的函数值-2<y2<0.
点睛:本题考查了一次函数与反比例函数的交点问题,用待定系数法求一次函数的解析式等知识点,主要考查学生的计算能力和观察图形的能力,用了数形结合思想.
【题型】解答题
【结束】
26
【题目】如图,四边形ABCD是平行四边形,点A(1,0),B(4,1),C(4,4).反比例函数 (x>0)的图像经过点D,点P是一次函数y=ax+4-4a(a0)的图像与该反比例函数图像的一个公共点.
(1)求反比例函数的表达式;
(2)一次函数y=ax+4-4a(a0)的图像恒过一定点,直接写出这个定点的坐标.
(3)对于一次函数y=ax+4-4a(a0),当y随x的增大而减小时,确定点P的横坐标的取值范围.(不必写出过程)
【答案】见解析
【解析】试题分析:(1)由B(4,1),C(4,4)得到BC⊥x轴,BC=3,根据平行四边形的性质得AD=BC=3,AD⊥x轴,而A点坐标为(1,0),可得到点D的坐标为(1,3),然后把D(1,3)代入y=即可得到k=3,从而可确定反比例函数的解析式;
(2)把x=4代入y=ax+4-4a得到y=4,即可说明一次函数y=ax+4-4a的图象一定过点C(4,4);
(3)设点P的横坐标为x,由于一次函数y=ax+4-4a过C点,并且y随x的增大而减小时,则P点的纵坐标要大于4或横坐标要大于4,当纵坐标大于4时,由y=>4得到x的范围,于是得到P点横坐标的取值范围.
试题解析:
解:(1)∵四边形ABCD是平行四边形,
∴AD=BC,
∵B(4,1),C(4,4),
∴BC⊥x轴,AD=BC=3,AD⊥x轴,
而A点坐标为(1,0),
∴点D的坐标为(1,3).
∵反比例函数y=(x>0)的函数图象经过点D(1,3),
∴k=1×3=3,
,∴反比例函数的解析式为y=;
(2)当x=4时,y=ax+4-4a=4a+4-4a=4,
∴一次函数y=ax+4-4a(a≠0)的图象一定过点C(4,4);
(3)设点P的横坐标为x,
∵一次函数y=ax+4-4a(a≠0)过C点,并且y随x的增大而减小,
∴P点的纵坐标要大于4或横坐标大于4(即x>4),
当纵坐标大于4时,
y=>4,
解得:x<,
∵P在第一象限,
∴0<x<,
则P点的横坐标的范围为0<x<或x>4,