题目内容

如图,将一张正方形纸片剪成四个小正方形,如图(1);然后再将其中的一个正方形剪成四个小正方形,此时共有7个正方形,如图(2);再将其中的一个正方形剪成四个小正方形,此时共有10个正方形,如图(3).按此操作继续下去…

精英家教网

(1)根据以上操作方法,请你填写下表:
操作次数n 1 2 3 4 5 ….
正方形的个数S 4 7 10      
(2)用代数式表示正方形的个数S和操作次数n之间的关系;
(3)按此方法操作下去,正方形的个数能否为2010个?若能,请说出是经过多少次操作后得到的;若不能,请说明理由.
(1)图1中正方形的个数为4=3×1+1;
图2中正方形的个数为7=3×2+1;
图3中正方形的个数为10=3×3+1;

可以发现:图几中正方形的个数等于3与几的乘积加1.
可得,图4、图5中正方形的个数分别为13、16.
操作次数n 1 2 3 4 5 ….
正方形的个数S 4 7 10  13 16   
(2)设正方形的个数为S,操作次数为n,按照(1)中的规律可得:S=3n+1.

(3)设经过n次操作后,正方形的个数为2010个,则有3n+1=2010,
n=
2009
3

因为
2009
3
不是整数,所以不合题意,
所以按此方法操作下去,正方形的个数不能为2010个.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网