题目内容
已知点A(x1, y1)、B(x2, y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为________.
在一个布袋内有大小、质量都相等的球20个,其中红球6个,从中任取1个,取到红球的概率为( )
A. B. C. D.
如图,⊙O的直径CD=20cm,AB是⊙O的弦,AB⊥CD,垂足为M,若OM=6cm,则AB的长为 cm.
如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.
(1)求抛物线的解析式;
(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;
(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
计算:(π-2)°+4cos30°--(-)-2.
下列命题为真命题的是( ).
A. 两条直线被一组平行线所截,所得的对应线段成比例
B. 相似三角形面积之比等于相似比
C. 对角线互相垂直的四边形是菱形
D. 顺次连结矩形各边的中点所得的四边形是正方形
绝对值为1的实数共有( ).
A. 0个 B. 1个 C. 2个 D. 4个
分式方程的解为__________.
计算:|﹣5|+(﹣1)2﹣()﹣1﹣.