题目内容
若正六边形的边长为2,则此正六边形的边心距为 .
.
【解析】
试题分析:连接OA、OB,根据正六边形的性质求出∠AOB,得出等边三角形OAB,求出OA、AM的长,根据勾股定理求出即可.
连接OA、OB、OC、OD、OE、OF,
∵正六边形ABCDEF,
∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,
∴∠AOB=×360°=60°,OA=OB,
∴△AOB是等边三角形,
∴OA=OB=AB=2,
∵OM⊥AB,
∴AM=BM=1,
在△OAM中,由勾股定理得:OM=.
考点:1.正多边形和圆;2.等边三角形的判定与性质;3.勾股定理.
练习册系列答案
相关题目