题目内容
黑、红、黄三种颜色涂在如图所示的圆圈中,每个圆圈只能涂一种颜色,并且要使每条连线两端的圆圈上涂上不同的颜色,则共有多少种不同涂法?
解:如图所示:
故要使每条连线两端的圆圈上涂上不同的颜色,则共有12种不同涂法.
分析:根据已知列出树状图,进而得出所有的符合要求的结果即可.
点评:此题主要考查了列表法或树状图法求概率的知识.此题比较简单,注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
故要使每条连线两端的圆圈上涂上不同的颜色,则共有12种不同涂法.
分析:根据已知列出树状图,进而得出所有的符合要求的结果即可.
点评:此题主要考查了列表法或树状图法求概率的知识.此题比较简单,注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
练习册系列答案
相关题目
下列游戏对双方公平的是( )
A、随意转动被等分成3个扇形,且分别均匀涂有红、黄、绿三种颜色的转盘,若指针指向绿色区域,则小明胜,否则小亮胜 | B、从一个装有3个红球,2个黄球和2个黑球(这些球除颜色外完全相同)的袋中任意摸出一个球,若是红球,则小明胜,否则小亮胜 | C、投掷一枚均匀的正方体形状的骰子,若偶数点朝上,则小明胜,若是奇数点朝上,则小亮胜 | D、从分别标有数1,2,3,4,5的五张纸条中,任意抽取一张,若抽到的纸条所标的数字为偶数,则小明胜,若抽到的纸条所标的数字为奇数,则小亮胜 |