题目内容

图(1)是一个黑色的正三角形,顺次连接它的三边的中点,得到如图(2)所示的第2个图形(它的中间为一个白色的正三角形);在图(2)的每个黑色的正三角形中分别重复上述的作法,得到如图(3)所示的第3个图形.如此继续作下去,则在得到的第6个图形中,白色的正三角形的个数是   
【答案】分析:本题可根据图形,可知后一个三角形中白三角形的个数=前一个三角形的白三角形个数加上黑三角形个数.
解答:解:设白三角形x个,黑三角形y个,
则:n=1时,x=0,y=1;
n=2时,x=0+1=1,y=3;
n=3时,x=3+1=4,y=9;
n=4时,x=4+9=13,y=27;
n=5时,x=13+27=40,y=81;
当n=6时,x=40+81=121.
所以白的正三角形个数为:121.
点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网