题目内容
用半径为10,圆心角为54°的扇形纸片围成一个圆锥的侧面,这个圆锥的底面圆半径等于______.
对于一个四位自然数n,如果n满足各个数位上的数字互不相同且均不为0,它的千位数字与个位数字之和等于百位数字与十位数字之和,那么称这个数n为“平衡数”.对于一个“平衡数”,从千位数字开始顺次取出三个数字构成四个三位数,把这四个三位数的和与222的商记为F(n). 例如:n=1526,因为1+6=2+5,所以1526是一个“平衡数”,从千位数字开始顺次取出三个数字构成的四个三位数分别为152、526、261、615,这四个三位数的和为:152+526+261+615=1554,1154222=7,所以F(1526)=7.
写出最小和最大的“平衡数”n,并求出对应的F(n)的值;
若s,t都是“平衡数”,其中s=10x+y+3201,t=1000m+10n+126(, , , ,x, y, m, n都是整数),规定: ,当F(s)+F(t)是一个完全平方数时,求k的最大值.
观察下列图形规律,其中第1个图形由6个○组成,第2个图形由14个○组成,第3个图形由24个○组成,…,照此规律下去,则第8个图形○的个数一共是( )
A. 84 B. 87 C. 104 D. 123
(1)解方程: ;(2)解不等式组:
△ABC中,AB=6,AC=8,BC=10,P为BC边上一动点,过线段AP上的点M作DE⊥AP,交边AB于点D,交边AC于点E,点N为DE中点,若四边形ADPE的面积为18,则AN的最大值=______.
计算的结果 = ______.
如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.
(1)求证:四边形BFCE是平行四边形;
(2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE是菱形.
下列四个数中,最小的数是( )
A. ﹣1 B. 0 C. 1 D. 3
某健步走运动爱好者用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是( )
A. 1.2,1.3 B. 1.3,1.3
C. 1.4,1.35 D. 1.4,1.3