题目内容

(2012•黔东南州)如图,⊙O是△ABC的外接圆,圆心O在AB上,过点B作⊙O的切线交AC的延长线于点D.
(1)求证:△ABC∽△BDC.
(2)若AC=8,BC=6,求△BDC的面积.
分析:(1)由AB是⊙O的直径,可得∠ACB=∠BCD=90°,又由BD是⊙O的切线,根据同角的余角相等,可得∠A=∠CBD,利用有两角对应相等的三角形相似,即可证得△ABC∽△BDC;
(2)由AC=8,BC=6,可求得△ABC的面积,又由△ABC∽△BDC,根据相似三角形的面积比等于相似比的平方,即可求得△BDC的面积.
解答:(1)证明:∵BD是⊙O的切线,
∴AB⊥BD,
∴∠ABD=90°,
∵AB是⊙O的直径,
∴∠ACB=∠BCD=90°,
∴∠A+∠D=90°,∠CBD+∠D=90°,
∴∠A=∠CBD,
∴△ABC∽△BDC;

(2)解:∵△ABC∽△BDC,
S△ABC
S△BDC
=(
AC
BC
)
2

∵AC=8,BC=6,
∴S△ABC=
1
2
AC•BC=
1
2
×8×6=24,
∴S△BDC=S△ABC÷(
AC
BC
)
2
=24÷(
8
6
2=
27
2
点评:此题考查了相似三角形的判定与性质、圆周角定理、切线的性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网