题目内容
【题目】已知△ABC中,AB=AC=BC=6.点P射线BA上一点,点Q是AC的延长线上一点,且BP=CQ,连接PQ,与直线BC相交于点D.
(1)如图①,当点P为AB的中点时,求CD的长;
(2)如图②,过点P作直线BC的垂线,垂足为E,当点P,Q分别在射线BA和AC的延长线上任意地移动过程中,线段BE,DE,CD中是否存在长度保持不变的线段?请说明理由.
【答案】(1)CD=;(2)线段DE的长度保持不变,理由见解析.
【解析】(1)过P点作PF∥AC交BC于F,即可构成小等边三角形BPF,再证明△PFD≌△QCD即可求解;
(2)根据(1)分两种情况:点P在线段AB上时,点P在BA的延长线上时分别求解即可得出结论.
解:(1)过P点作PF∥AC交BC于F,
∵点P为AB的中点,∴BP=A B=3,
∵AB=AC=BC ,∴∠B=∠ACB=∠BAC=60°,
∵PF∥AC,∴∠PFB=∠ACB=60°,∠BPF=∠BAC=60°,
∴△PBF是等边三角形,
∴BF=FP=BP=3,∴FC=BC-BF=3,
由题意,BP=CQ,∴FP=CQ,
∵PF∥AC,∴∠DPF=∠DQC,
又∠PDF=∠QDC,∴△PFD≌△QCD,
∴CD=DF= FC= ;
(2)当点P,Q在移动的过程中,线段DE的长度保持不变,
分两种情况讨论:
①当点P在线段AB上时,
过点P作PF∥AC交BC于F,由(1)知PB=PF,
∵PE⊥BC,∴BE=EF,
由(1)知△PFD≌△QCD,CD=DF,
∴DE=EF+DF= BC=3,
②当点P在BA的延长线上时,同理可得DE=3,
∴当点P、Q在移动的过程中,线段DE的长度保持不变.
练习册系列答案
相关题目