题目内容
在纸上剪下一个圆形和一个扇形纸片,使之恰好能够围成一个圆锥模型,若圆的半径为r,扇形的半径为R,扇形的圆心角等于120°(如图),则r与R之间的关系是( )
A. R=2r B. R=r C. R=3r D. R=4r
如图,在三角形纸片 ABC 中,AB=15cm,AC=9cm,BC=12cm, 现将边 AC 沿过点 A 的直线折叠,使它落在 AB 边上.若折痕交 BC 于点 D,点 C 落在点 E 处,你能求出 BD 的长吗?请写出求解过程.
如果a、b互为相反数,c、d互为倒数,m的绝对值是2,那么-cd的值是( )
A. 2 B. 3 C. 4 D. 不确定
在△ABC中,∠C=90°,AB=5,BC=4,以A为圆心,3为半径作圆,则点C与圆A的位置关系为:点C在圆A_____.
若关于x的一元二次方程x2﹣2mx﹣4m+1=0有两个相等的实数根,则(m﹣2)2﹣2m(m﹣1)的值为_____.
阅读下面材料:
在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:
尺规作图:过圆外一点作圆的切线.
已知:P为⊙O外一点.
求作:经过点P的⊙O的切线.
小敏的作法如下:如图,
(1)连接OP,作线段OP的垂直平分线MN交OP于点C.
(2)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点.
(3)作直线PA,PB.
老师认为小敏的作法正确.
请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是 ;由此可证明直线PA,PB都是⊙O的切线,其依据是 .请写出证明过程.
某景区商店以2元的批发价进了一批纪念品.经调查发现,每个定价3元,每天可以能卖出500件,而且定价每上涨0.1元,其销售量将减少10件.根据规定:纪念品售价不能超过批发价的2.5倍.
(1)当每个纪念品定价为3.5元时,商店每天能卖出______件;
(2)如果商店要实现每天800元的销售利润,那该如何定价?
若关于x的一元二次方程x2﹣2x+m=0有一个解为x=﹣1,则另一个解为( )
A. 1 B. ﹣3 C. 3 D. 4
如图,在Rt△ABC中,∠C=90°,以△ABC的一边BC为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为( )
A. 2 B. 3 C. 4 D. 5