题目内容
【题目】在△ABC中,∠B=45°,∠C=30°,点D是BC上一点,连接AD,过点A作AG⊥AD,在AG上取点F,连接DF.延长DA至E,使AE=AF,连接EG,DG,且GE=DF.
(1)若AB=2,求BC的长;
(2)如图1,当点G在AC上时,求证:BD=CG;
(3)如图2,当点G在AC的垂直平分线上时,直接写出的值.
【答案】(1)BC =2+2;(2)证明见解析;(3).
【解析】试题分析:(1)如图1中,过点A作AH⊥BC于H,分别在RT△ABH,RT△AHC中求出BH、HC即可.
(2)如图1中,过点A作AP⊥AB交BC于P,连接PG,由△ABD≌△APG推出BD=PG,再利用30度角性质即可解决问题.
(3)如图2中,作AH⊥BC于H,AC的垂直平分线交AC于P,交BC于M.则AP=PC,作DK⊥AB于K,设BK=DK=a,则AK=a,AD=2a,只要证明∠BAD=30°即可解决问题.
试题解析:(1)如图1中,过点A作AH⊥BC于H.
∴∠AHB=∠AHC=90°,
在RT△AHB中,∵AB=2
,∠B=45°,
∴BH=ABcosB=2=2,
AH=ABsinB=2,
在RT△AHC中,∵∠C=30°,
∴AC=2AH=4,CH=ACcosC=2,
∴BC=BH+CH=2+2.
(2)证明:如图1中,过点A作AP⊥AB交BC于P,连接PG,
∵AG⊥AD,∴∠DAF=∠EAC=90°,
在△DAF和△GAE中,
∴△DAF≌△GAE,
∴AD=AG,
∴∠BAP=90°=∠DAG,
∴∠BAD=∠PAG,
∵∠B=∠APB=45°,
∴AB=AP,
在△ABD和△APG中,
∴△ABD≌△APG,
∴BD=PG,∠B=∠APG=45°,
∴∠GPB=∠GPC=90°,
∵∠C=30°,
∴PG=GC,
∴BD=CG.
(3)如图2中,作AH⊥BC于H,AC的垂直平分线交AC于P,交BC于M.则AP=PC,
在RT△AHC中,∵∠ACH=30°,
∴AC=2AH,
∴AH=AP,
在RT△AHD和RT△APG中,
∴△AHD≌△APG,
∴∠DAH=∠GAP,
∵GM⊥AC,PA=PC,
∴MA=MC,
∴∠MAC=∠MCA=∠MAH=30°,
∴∠DAM=∠GAM=45°,
∴∠DAH=∠GAP=15°,
∴∠BAD=∠BAH﹣∠DAH=30°,
作DK⊥AB于K,设BK=DK=a,则AK=a,AD=2a,
∴
∵AG=CG=AD,
∴.